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ABSTRACT

We employ a Markov-Switching regression model using monthly US data from April 1987 to August 2022 to investigate the effect of climate policy 
uncertainty (CPU) on renewable energy consumption (REC). The main findings suggest the presence of a nonlinear relationship between CPU and REC. 
The baseline analysis using the CPU index reveals an adverse effect in regimes characterized by high levels of uncertainty. However, the effect is not 
statistically significant in a low uncertainty regime. To account for potential variations in the results, we perform a robustness analysis that considers 
the effect of CPU on REC, which may fluctuate based on the authorities’ contextual perspectives (i.e., being in favor or against climate policy) and 
also the effect of CPU on REC by household. In addition, we incorporate a robustness check by utilizing the environmental policy uncertainty index 
developed by Noailly et al. (2022). The robustness test results confirm the results obtained from the baseline estimation.

Keywords: Climate Policy Uncertainty, Environmental Policy Uncertainty, Renewable Energy Demand, Markov-switching Regression 
JEL Classifications: E61, E65, Q21, Q28, Q58

1. INTRODUCTION

In the past two decades, there has been a vast transformation 
from non-renewable to renewable energy in developed and many 
developing countries. Shang et al. (2022) mention that four key 
aspects push the transformation are: (1) technological progress 
that reduced the costs of new investments in energy sources, 
(2) the climate change crisis, (3) volatility of crude oil price, and 
(4) policies by the governments which support renewable energy 
through credit provisions and tax benefits on renewable energy 
investments.

But despite worldwide governments’ commitment to tackle 
the issue and alleviate climate change, substantial uncertainty 
remains in executing the policies. For example, Noailly et al. 
(2022) observed that under the Trump Administration, a 
significant number of climate initiatives implemented by prior 

administrations, particularly those of the Obama Administration, 
were reversed. With this in mind, we aim to investigate the 
effects of climate policy uncertainty (CPU) on renewable energy 
consumption (REC) using monthly data from the United States 
from 1987M04 to 2022M08. Using Gavriilidis’s (2021) novel 
climate policy uncertainty index, which followed the methods of 
Baker et al. (2016), we can examine the existence and magnitude 
of the effect from CPU to REC.

We choose the United States for this analysis because it is an 
advanced economy with the highest fossil fuel consumption per 
capita in 2022, at around 63,836 kWh (OurWorldinData, 2022). It 
also lags behind many other countries in terms of renewable energy 
investment as a percentage of GDP, with the US investing only 
0.2% in 2015, while others, such as South Africa (1.4%), China 
(0.9%), India (0.5%), and others, invested more. However, the 
findings of this paper should also be relevant for other developing 
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countries looking to implement climate policies that encourage 
the use of renewable energy.

Several studies have been conducted for the US economy exploring 
the effect of climate policy uncertainty (CPU) on renewable energy 
consumption (REC), but there is little consensus on the results. 
For example, Shang et al. (2022) use an augmented autoregressive 
distributed lags (ARDL) approach with quarterly US data from 
2000Q1 to 2021Q3 and find that CPU reduces non-REC, and it 
positively affects REC in the long run. Meanwhile, using a novel 
Fourier augmented autoregressive distributed lags (FA-ARDL) 
approach, Syed et al. (2023) suggest that CPU reduces REC. 
In another study, Zhou et al. (2023) examine the short- to long-
run relationships between CPU and REC and find that CPU 
positively affects REC in the short- and long-run, while a negative 
relationship exists between them in the medium-run.

Although studies investigating the CPU-REC nexus have been 
conducted, those studies have some limitations. First, Shang et al. 
(2022) use dummy variables to capture structural breaks. Syed et al. 
(2023) claim that the Fourier transformation they utilize outperforms 
the dummies approach because Shang et al. (2022) do not develop 
their analysis based on economic theory. The Fourier approximation 
Syed et al. (2023) developed does not require any prior information 
about the nature, frequency, and date/time of structural breaks. 
However, their model is limited to the neoclassical demand function 
assumption. Furthermore, these studies do not consider that the 
relationship between CPU-REC might evolve/change over time.

Li et al. (2023) employ a VAR model with a time-varying rolling-
window causality test and discover that the causality between 
CPU-REC is both negative and positive-depending on the authorities’ 
attitudes towards climate change. However, the robustness of this 
study is limited to the choice of a rolling window to generate the 
time-varying effect. In another study, Zhou et al. (2023) use the 
time-varying parameter vector autoregressive model with stochastic 
volatility (TVP-SV-VAR) model and find that the relationship 
between CPU-REC is time-varying and that the effects of CPU lead 
to higher oil prices in the short and medium-term and higher REC 
in the short and long term most of the time. Despite the interesting 
findings, they are inconsistent with the fact that CPU might have 
different effects depending on the source/nature of the change.

For example, Noailly et al. (2022) note that during the Trump 
Administration, several previous administrations’ climate 
policies, most notably those of the Obama Administration, were 
reversed. Several examples include the withdrawal from the Paris 
Agreement and the repeal of the Clean Power Plan, both of which 
were politically motivated decisions that increased economic 
uncertainty (Li et al., 2023). This policy shift contradicted 
previous administrations’ efforts to shift from non-renewable to 
renewable energy consumption to achieve carbon neutrality. As 
shown in Figure 1, this abrupt and massive policy change caused 
a substantial shock to climate policy uncertainty (CPU) and might 
have a different effect than when the change is small.

Our study makes the following contributions. First, previous 
research has mostly examined the CPU-REC nexus using linear 

models, which assume that economic actors’ behavior does not 
change with different levels of uncertainty. While the time-varying 
model developed by Li et al. (2023) and Zhou et al. (2023) fail 
to identify a negative effect of CPU on REC in extreme periods 
such as the withdrawal from the Paris Agreement and the repeal 
of the Clean Power Plan during Trump’s administration in the 
US. Second, all estimation was mainly carried out using one type 
of index-reducing the robustness of the results. Our study also 
estimates the CPU-REC relationship using the environmental 
policy uncertainty (ENVPU) index developed by Noailly et al. 
(2022). They use a word search strategy similar to Gavriilidis 
(2021) but strengthened with a Support Vector Machine (SVM) 
algorithm to classify whether an article constitutes uncertainty. 
Lastly, we also include data on household renewable energy 
consumption (RECHH) to find whether the same effect of 
CPU-REC also holds in the household context.

The remainder of the paper is divided into five sections. Section 
2 examines the literature on the CPU-REC relationship and the 
factors that influence REC. Section 3 delves into the methodology. 
Section 4 summarizes the main findings and robustness tests. 
Section 5 discusses the findings. Section 6 wraps up the paper by 
summarizing the findings and discussing the implications.

2. LITERATURE REVIEW

The bulk of research on renewable energy consumption has 
centered around the Environmental Kuznets Curve (EKC), 
including Sari et al. (2008), Ocal and Aslan (2013), Apergis and 
Danuletiu (2014) and among others. This is not surprising, given 
that studying the effect of climate policy uncertainty was tedious 
before Gavriilidis developed the CPU index in 2021.

With the introduction of the new measure, several studies have 
begun to investigate the CPU-REC nexus. Shang et al. (2022) use 
the ARDL approach to determine the short and long-run effects 
of climate policy uncertainty on non-renewable and renewable 
energy consumption. Their findings indicated that CPU has no 
significant effect on REC in the short or long term, but it affects 
fossil fuels negatively. Meanwhile Zhou et al. (2023), taking a 
different approach, investigating the time-varying relationship 
between CPU, oil prices, and REC and find that CPU positively 
affects oil prices and REC in most periods using a time-varying 
parameter vector autoregressive model (TVP-SV-VAR). They 
explain the validity of their findings as being due to the goal of 
climate policy, which is to reduce carbon emissions and thus 
incentivize the use of renewable energy, which contrasts with the 
effect of economic policy uncertainty on REC, which, according 
to Shafiullah et al. (2021), is generally negative.

Similarly, Li et al. (2023) investigate the CPU-REC relationship 
while considering time-varying effects. They estimated a VAR 
model with an additional time-varying rolling-window bootstrap 
causality test to account for structural changes and parameter 
instability, which resulted in time-varying causality in various 
subsamples. They suggest that the causality between CPU and 
REC varies according to the authorities’ attitudes toward climate 
change mitigation. This implies that regimes generally supportive 
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of climate change mitigation will benefit from a positive CPU-
REC nexus and vice versa.

Xi et al. (2023) use a vector autoregressive (VAR) model with 
Granger causality tests to investigate the effects of uncertainty 
on five types of REC. They discover that CPU affects REC on 
average, as well as solar and wind energy, but not geothermal or 
hydroelectric. While no effects are found on geothermal energy 
consumption after applying time-varying tests, there are effects 
on the other types, albeit discontinuously, leading the authors to 
conclude that the influence of CPU on REC varies with time.

Syed et al. (2023) employ a Fourier Augmented ARDL (FA-
ARDL) model to account for structural breaks in modeling 
the CPU-REC nexus. They discover that CPU reduces REC in 
both the short and long run, which could be attributed to a lack 
of clarity for long-term planning and investment in renewable 
energy consumption, as well as individuals adopting a “wait and 
see” policy by purchasing non-renewable energy until the policy 
landscape becomes more certain.

Aside from the CPU-REC nexus, other studies have investigated 
the effect of economic policy uncertainty (EPU) on REC, such as 
Shafiullah et al. (2021), who use a nonlinear model and Granger 
causality analysis to find that there is a nonlinear causal effect from 
EPU to REC, which is harmful in the long run. Yi et al. (2023) 
utilize a CS-ARDL model on a panel of top renewable energy 
consumers and discovered that EPU negatively affects REC in 
both the short-and long-run. Using various parametric models, 
Ivanovski and Marinucci (2021) find that EPU is negatively 
associated with REC. While Feng and Zheng (2022) employ panel 
fixed effects on 22 countries to suggest that EPU positively affects 
renewable energy innovation. Further subsample analysis helped 
them confirm that OECD members and right-ring countries tend 
to have higher growth in renewable energy.

Regarding factors that influence REC, previous research has 
identified three that may be interesting. The first factor is 
economic growth, commonly proxied by GDP growth or industrial 
productivity, because previous research suggests that higher 
growth may lead to increases in income, increasing consumer 
access to renewable energy. Several studies have found this 
proper, including Ocal and Aslan (2013), who utilize the ARDL 
and Toda-Yamamoto Causality tests to discover unidirectional 
causality from economic growth to REC in Turkey. Using the 
Canning-Pedroni Dynamic Error Correction Model (ECM) and 
data from 80 countries, Apergis and Danuletiu (2014) demonstrate 
long-run positive bidirectional causality from GDP to REC.

The second factor commonly discussed in REC modeling is 
carbon dioxide emissions (CO2), which is the primary catalyst of 
REC, according to Bhattacharyya (2012) and Goldemberg (2004). 
Given that the modern world is heavily reliant on fossil fuels and 
non-renewable energy sources, there has been a dramatic increase 
in the concentration of greenhouse gases (GHG), which includes 
CO2, resulting in abnormal changes in the earth’s climate. As a 
result, CO2 emissions serve as a warning to the global economy, 
incentivizing consumers to switch to renewable energy sources 

for their daily energy consumption to mitigate climate change, as 
demonstrated by Sadorsky (2009), who discover that per capita 
income and CO2 emissions increase REC in the G7 countries.

Within the context of African countries, Olanrewaju et al. (2019) 
find that CO2 emissions are negatively associated with REC. 
Meanwhile, other studies have discovered that REC affects CO2 
emissions. Karaaslan and Camkaya (2022) suggest a unidirectional 
causal effect from REC to CO2 emissions in the long run, using 
the ARDL and Toda-Yamamoto Causality test in the context of 
Turkey. In contrast to both of these lines of research, Menyah and 
Wolde-Rufael (2010) find no causal relationship between REC and 
CO2 emissions using a modified Granger Causality test.

Another factor to consider is the price of oil, typically proxied by 
West Texas Intermediate (WTI) crude oil prices, given that REC 
serves as a substitute for non-renewable energy sources and may be 
affected by changes in oil prices. For example, Brini et al. (2017) 
employ the ARDL model to analyze data from Tunisia from 1980 
to 2011 and discover that oil prices are positively related to REC. 
Meanwhile, Sahu et al. (2022) use the Nonlinear Autoregressive 
Distributed Lag (NARDL) model in the United States and find that 
GDP and oil prices increase both REC in the short- and long-run.

3. METHODOLOGY

3.1. Data
This paper focuses on the US economy, using monthly data from 
1987M04 to 2022M08. The dependent variable is the aggregate 
of REC from various sectors of the US production side, based on 
data from the Energy Information Administration (EIA) which 
includes different energy sources such as biomass, hydropower, 
geothermal, wind, and solar power. The independent variable of 
interest, CPU, is obtained from the online repository for policy 
uncertainty, along with data from Gavriilidis (2021). It should be 
noted that the CPU data is only available for the United States. 
While there are other CPU indicators, Gavriilidis’s (2021) is 
the one that made publicly available. Following the previously 
discussed factors that influence REC, we include CO2 emissions 
(CO2), the Index of Industrial Productivity (IIP), and West Texas 
Intermediate Oil Prices as covariates (WTI). The EIA also provides 
CO2 data, while the Federal Reserve Bank of St. Louis Economic 
Data (FRED) provides IIP and WTI (FRED, 2022; FRED, 2024).

We also collect additional data to test the robustness of our 
estimates. In one of our iterations, we substitute the CPU for the 
Environmental Policy Uncertainty (ENVPU) index to ensure 
the model’s robustness concerning the main variable of interest. 
The ENVPU developed by Noailly et al. (2022) uses a similar 
word search strategy enhanced with a Support Vector Machine 
(SVM) algorithm to determine whether an article is uncertain. 
They contend that their method produces better predictions of 
uncertainty within the corpus of articles than the Gavriilidis (2021) 
algorithm, based on Baker et al. (2016). Noailly et al. (2022) 
discover that their algorithm has a higher recall rate than Baker 
et al.’s (2016) algorithm, with the ENVPU having 70%. The other 
has 8%, meaning that the SVM algorithm performs significantly 
better regarding true positives being correctly classified as 
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uncertain. The ENVPU is, thus, a better metric. This data is sourced 
from the author’s repository, but there are fewer observations 
because the data spans only from 1990M01 to 2019M03.

Finally, we also use data on household renewable energy 
consumption (RECHH) to see if the same effect of CPU on REC 
holds in the household context. This data is collected from the 
CEIC, with monthly periodicity spanning the entire dataset’s 
number of periods (CEIC, 2018).

3.2. Conceptual Framework
Considering the existing studies that have discussed the 
determinants of renewable energy demand, we employ the 
Markov-Switching Autoregressive (MSAR) model to estimate 
the different regimes, thus specifying a first-order Markov process 
for the regime probabilities. This means that the probability of 
being in a regime depends on the previous state, which could be 
described as:

P s j s i p tt t ij� �� � � � ��| 1  (1)

where st=1 or 2 is an unobserved state variable, i is the regime in 
period t-1, j is the regime in period t. In a transition matrix, this 
could be represented as:
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Following Goldfeld and Quandt (1973), Hamilton (1989), and Liu 
et al. (2022), we apply the Markov-Switching model to examine 
the effect of CPU on REC, which is specified below:
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where RECt is the renewable energy consumption at time , which in 
this case would be in monthly intervals, st ∈{1,2} is an irreducible 
and ergodic Markov regime-switching process, in which the first 
state (st=1) denotes the low uncertainty regime, while the second 
state (st=2) denotes the high uncertainty regime. CPUt is the climate 
policy uncertainty index, REC(t-n) are the lagged covariates of REC 
at time t-n, CO2 t is the CO2 emissions, WTIt is the West Texas 
Intermediate Crude Oil Price, and IIPt is the Industrial Production 
Index at month t. The ∆ symbol denotes the differentiated variable, 
and L denotes the natural logarithmic transformation applied to the 
variable. Finally, ϕ(v,s_t) denotes the coefficient values for coefficient 
c in state st, while εt is the random disturbance term under the 
regime-switching state based on the uncertainty.

3.3. Econometric Procedures
To avoid the spurious regression problem, which Granger and 
Newbold (1974) highlighted, it is critical to use unit root tests to 
determine the order of integration of each series before proceeding 
with further regression analyses. We use three standard unit root 
tests to determine the level of integration: the Augmented Dickey-

Fuller (ADF) test (Dickey and Fuller, 1979), the Philips-Perron 
(PP) test (Phillips and Perron, 1988), and the Kwiatkowski-Philips-
Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992).

However, structural breaks within the data points are possible, 
which could question the validity of the previous tests. We use 
the Zivot and Andrews (2002) breakpoint unit root tests to ensure 
that the series is truly integrated at the level predicted by the prior 
tests. Despite the possibility of seasonal unit roots, we will have 
dealt with this possibility using the STL decomposition for the 
first-differenced series. In contrast, the seasonally-differenced 
series will have dealt with it entirely.

To validate the use of the MS model, which is a nonlinear model, 
we must first test the data series for nonlinearities. To do so, we use 
the Brock-Dechert-Scheinkman-LeBaron (BDS) independence test 
(Brock et al., 1996), a portmanteau test for time-based dependence 
in a series that does not require a specific alternative hypothesis 
(Enders, 1994). If the null hypothesis of linear dependence is 
rejected, then the data contains nonlinearities. To validate the BDS 
test results, we also use the McLeod and Li (1983) test, which is 
the exact Lagrange Multiplier (LM) test for ARCH errors and has 
a high power to detect a variety of nonlinearities (Enders, 1994). 
After testing for the integration level and nonlinearities within the 
data, we can estimate the MS model as specified before.

4. MAIN RESULTS AND DISCUSSION

4.1. Unit Root and Linearity Tests
Before moving on to the unit root and linearity tests, it is necessary 
to review the descriptive statistics for all of the series used in this 
analysis, which are listed in Table 1. The dataset contains 425 
observations-except the ENVPU, which has only 351 observations. 
While the other variables appear normal in the summary in Table 1, 
the CPU appears skewed and may have heavier tails than the 
normal distribution. As a result, log-transformed variables are 
used to normalize the data points.

Moving on to the unit root tests, we apply the standard unit root 
tests, which include the Augmented Dickey-Fuller tests, Phillips-
Perron tests, and the KPSS tests in Table 2. From the table, we 
can infer that all of the data series are integrated at I(1). The 
Zivot-Andrews test with stuctural breaks in Table 3 also leads us 
to this conclusion.

We use the BDS Test for linearity and the McLeod-Li test to 
support using a nonlinear model, as shown in Table 4. According 
to the results in Table 4, the null hypothesis that the series are 
linearly dependent is rejected. However, keep in mind that these 
results do not indicate the shape of the nonlinearity, although we 
can reasonably conclude that nonlinearities exist in the data. As a 
result, we can estimate the MS model.

4.2. Main Results
The main findings of the MS model are documented in Table 5. 
Table 5 displays two results obtained for low and high uncertainty 
regimes. The data indicates a negative nonlinear relationship 
between CPU and REC, with differing effects observed between 
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Table 1: Descriptive statistics
CPU REC CO2 IIP WTI ENVPU RECHH

Mean 100.0000 647.0932 450.2453 87.13729 46.77831 100.0000 52.60569
Median 86.59016 563.8750 450.6330 92.16290 38.03000 96.053 51.28300
Maximum 411.2888 1200.249 560.7700 106.1340 133.8800 174.641 85.90400
Minimum 28.16193 395.8400 305.2040 56.72620 11.35000 44.914 32.33000
SD 55.65215 189.0841 42.77749 14.75428 29.38094 25.519 12.55499
Skewness 2.019945 0.881984 0.143427 -0.72566 0.741345 0.407 0.649977
Kurtosis 8.075493 2.627666 2.896946 2.043739 2.411435 2.589 2.699449
Jarque-Bera 745.1903 57.55585 1.645202 53.49270 45.06379 12.160 31.52460
Observations 425 425 425 425 425 351 425

Table 2: Standard unit root tests on dataset
Augmented dickey-fuller test Phillips-perron test Kwiatkowski-phillips- 

schmidt-shin test
Level 1st Diff Level 1st Diff Level 1st Diff

Climate policy uncertainty
None 0.479 −13.26*** 0.251 −85.26***
Intercept −2.326 −13.27*** −10.36*** −119.9*** 1.646*** 0.246
Trend and Intercept −5.903*** −13.27*** −14.04*** −137.2*** 0.364*** 0.245***

CO2 emission
None −0.044 −5.496*** 0.392 −59.58***
Intercept −1.810 −5.489*** −7.844*** −59.48*** 0.673** 0.246
Trend and Intercept −1.922 −5.649*** −7.843*** −59.16*** 0.665*** 0.127*

Renewable energy consumption
None 1.882 −4.841*** 0.859 −36.16***
Intercept 0.075 −5.399*** −1.626 −37.26*** 2.161*** 0.048
Trend and Intercept −1.527 −5.494*** −4.778*** −38.90*** 0.511*** 0.017

WTI crude oil price
None 0.231 −15.41*** 0.559 −14.78***
Intercept −1.962 −15.40*** −1.479 −14.79*** 1.973*** 0.043
Trend and Intercept −3.410* −15.39*** −2.718 −14.76*** 0.274*** 0.043

Environmental policy uncertainty
None −0.200 −13.13*** −0.152 −148.9***
Intercept −6.084*** −13.11*** −12.64*** −151.7*** 0.389* 0.155
Trend and Intercept −6.193*** −13.09*** −12.76*** −156.7*** 0.163** 0.154**

Industrial productivity
None 1.650 −4.087*** 2.105 −30.07***
Intercept −1.649 −5.010*** −1.987 −31.43*** 2.159*** 0.225
Trend and Intercept −1.690 −5.097*** −2.118 −31.19*** 0.529*** 0.048

*, **, and ***indicate significance level at 10%, 5%, and 1%

Table 3: Zivot-andrews structural unit root test results
Series Constant Trend Constant and trend

Min t-stat Break Min t-stat Break Min t-stat Break
LCPU

Level −4.134 2016M09 −3.844 2014M04 −4.075 2016M09
Seas. Diff −7.538*** 2016M03 - - −7.612*** 2016M03

LCO2
Level −3.081 1995M07 −4.231* 2004M01 −4.281 2008M02
Seas. Diff −6.707*** 2008M02 −6.482*** 1995M09 −6.794*** 2008M02

LREC
Level −3.589 1997M11 −3.402 2001M10 −4.854* 2000M05
Seas. Diff −5.466*** 2001M12 −4.869*** 1998M11 −6.004*** 2001M12

LWTI
Level −4.573 2014M08 −3.694 2010M11 −4.570 2003M10
Seas. Diff −4.377 2008M07 −3.996 2016M08 −4.686 2014M07

LENVPU
Level −4.416 2004M02 −3.716 2008M02 −4.552 2004M02
Seas. Diff −5.666*** 2008M06 −5.554*** 1994M05 −5.653*** 2007M09

LIIP
Level −4.344 1996M02 −5.036*** 2000M07 −5.137** 1997M08
Seas. Diff −4.206 2000M07 −4.061 1994M02 −4.515 2000M07

*, **, and*** indicate significance level at 10%, 5%, and 1%
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Table 4: Brock-Dechert-Scheinkman-LeBaron (BDS) test results
BDS Stat. SE z-Stat. Prob. Raw Epsilon Pairs with Epsilon Triples with Eps.

Climate policy uncertainty
2 0.077451 0.004 21.364 0.0000
3 0.129837 0.006 22.527 0.0000
4 0.162895 0.007 23.730 0.0000 0.677829 127315.0 41004373
5 0.178910 0.007 25.003 0.0000 V-Stat: V-Stat:
6 0.184340 0.007 26.712 0.0000 0.704858 0.534150

CO2 emission
2 0.073523 0.003 26.114 0.0000
3 0.107972 0.004 24.184 0.0000
4 0.119859 0.005 22.604 0.0000 0.140891 127203.0 40297173
5 0.123901 0.006 22.480 0.0000 V-Stat: V-Stat:
6 0.127872 0.005 24.128 0.0000 0.704238 0.524938

Renewable energy consumption
2 0.166916 0.003 64.002 0.0000
3 0.286496 0.004 69.172 0.0000
4 0.369377 0.005 74.982 0.0000 0.444801 127449.0 40280603
5 0.426271 0.005 83.137 0.0000 V-Stat: V-Stat:
6 0.466022 0.005 94.393 0.0000 0.705600 0.524722

WTI crude oil price
2 0.183153 0.002 92.030 0.0000
3 0.308828 0.003 97.825 0.0000
4 0.393758 0.004 105.01 0.0000 1.067691 127463.0 39800711
5 0.450577 0.004 115.61 0.0000 V-Stat: V-Stat:
6 0.487993 0.004 130.23 0.0000 0.705678 0.518470

Environmental policy uncertainty
2 0.031129 0.003 10.221 0.0000
3 0.050972 0.005 10.530 0.0000
4 0.058610 0.006 10.172 0.0000 0.390901 86943.00 22767865
5 0.061004 0.006 10.165 0.0000 V-Stat: V-Stat:
6 0.059673 0.006 10.318 0.0000 0.705700 0.526503

Industrial productivity
2 0.198684 0.004 55.352 0.0000
3 0.340272 0.006 60.045 0.0000
4 0.440002 0.007 65.645 0.0000 0.313233 126429.0 40447033
5 0.509573 0.007 73.441 0.0000 V-Stat: V-Stat:
6 0.558012 0.007 83.969 0.0000 0.699953 0.526890

*, **, and ***indicate significance level at 10%, 5%, and 1%

Table 5: Main Results using Markov-Switching (MS) Model Estimation
Regime 1

Variable Coefficient SE t-Statistic Prob.*
C 0.075283*** 0.005112 14.72598 0.0000
Seas ΔLCPU −0.005453 0.008200 −0.664966 0.5061
First ΔLIIP 0.133791 0.310108 0.431432 0.6662
Seas ΔLCO2 0.323166*** 0.094164 3.431937 0.0006
First ΔLWTI 0.020247 0.038291 0.528749 0.5970
Log (Sigma) −2.996951*** 0.055043 −54.44730 0.0000

Regime 2
Variable Coefficient SE t-Statistic Prob.*
C −0.032645*** 0.006346 −5.144081 0.0000
Seas ΔLCPU −0.038527*** 0.011588 −3.324593 0.0009
First ΔLIIP 1.229990** 0.522885 2.352312 0.0187
Seas ΔLCO2 0.167869 0.139708 1.201565 0.2295
First ΔLWTI 0.081298 0.060716 1.338985 0.1806
Log (Sigma) −2.806659*** 0.055124 −50.91531 0.0000
Transition Matrix Parameters
P11-SDCPU 0.596931*** 0.073658 8.104068 0.0000
P21-SDCPU −0.587852*** 0.078218 −7.515562 0.0000
Mean dependent var 0.024837 Log-Likelihood 559.9388
S.D. dependent var 0.077647 Akaike Info Criterion −2.643771
Durbin-Watson stat 1.094442 Schwarz Criterion −2.507383
S.E. of regression 0.061702 Hannan-Quinn Criterion −2.589828
*, **, and ***indicate significance level at 10%, 5%, and 1%
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the two regimes. In a regime characterized by low uncertainty, the 
effect of CPU on REC is not statistically significant. However, 
the CO2 covariate is both statistically significant and positively 
correlated. A statistically significant and negative relationship 
between CPU and REC has been observed at the high uncertainty 
regime, which implies that when the level of uncertainty reaches 
a threshold that alters its state, the CPU has a detrimental effect 
on REC.

These findings align with the research conducted by Syed et al. 
(2023), Zhou et al. (2023), and Li et al. (2023). However, the 
results of Shang et al. (2022) differ from these findings since 
they conclude that the effect of CPU on REC is not statistically 
significant. Although Shang et al. (2022) observe comparable 
findings to those in the low uncertainty domain, they cannot 
accurately represent the negative nonlinear effect of CPU on REC 
in the high uncertainty regime.

The negative effect makes sense, as REC could require significant 
capital investments for companies to generate their own renewable 
energy source. Note that the data collected from the EIA are 
the sectoral data of the production side. Bhattacharyya (2019) 
discusses how energy projects tend to be more capital intensive, 
have a high degree of asset specificity, and have a generally longer 
life of assets and gestation periods. Thus, uncertainty can affect a 
company’s decision to undergo these projects for the sake of REC. 
Syed et al. (2023) note a similar issue surrounding the uncertainty 
of the Production Tax Credit (PTC) on renewable energy 
consumption, which led to difficulties in long-term planning and 
investment. According to Syed et al. (2023), the adverse notions 
toward REC during a time of high uncertainty are reasonable.

Table 6 presents a matrix displaying the probabilities associated 
with being in the low or high uncertainty regimes. Additionally, 
Figure 2 illustrates the visual representation of the smoothed 
regime probabilities. Table 6 illustrates that the transition 

probability between different regimes is relatively low, whereas 
the probability of staying within a particular regime appears 
higher. The probability of transitioning between the low and high 
uncertainty regimes is approximately equal. Figure 2 displays 
the corresponding regimes for each period in the observation. 
During election periods, there is a greater level of uncertainty, 
whereas an unusual persistence is shown in the first years of 
the Bush Administration from 2001 to 2009. The initial state 
of increased uncertainty can be attributed to the uncertainties 
surrounding climate science, the deceleration of the US economy, 
and concerns about energy security. These factors prompted the 
Bush Administration to reject the Kyoto Protocol in 2001 and 
subsequently develop its own policies to address climate change 
issues (Blanchard, 2003).

4.3. Robustness Checks
In order to assess the robustness of the main findings, we 
re-estimate the model with the household renewable energy 
consumption (RECHH) serving as the dependent variable. The 
results in Table 7 indicate the presence of a significant nonlinear 
relationship between the CPU and RECHH. Specifically, in the 

Table 6: Transition probabilities for main estimation
Time-varying transition probabilities

P (i, k) = P (s (t) = k|s (t-1) = i)
(row=i/column=k)

Mean 1 2
1 0.934271 0.065729
2 0.068212 0.931788
SD 1 2
1 0.016178 0.016178
2 0.016501 0.016501

Time-varying expected durations
1 2

Mean 16.28461 15.65433
SD 4.656862 4.389690

(Source: Gavriilidis, 2021)

Figure 1: Climate Policy Uncertainty in the US between 2009 and 2022
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low uncertainty regime, the coefficient for the log-differenced CPU 
has a positive effect on RECHH, whereas in the high-uncertainty 
regime, the effect is negative.

It is important to observe that the coefficient representing the 
effect of CPU on RECHH is greater in the high uncertainty regime 
compared to the low uncertainty domain. This indicates that the 
influence of the CPU is significantly bigger during periods of 
high uncertainty. Furthermore, the effect of the CPU in the low 
uncertainty regime differs from both the prior findings and those of 
Syed et al. (2023). It is important to acknowledge that the shocks 
observed in the CPU by Gavriilidis (2021), explicitly concerning 
household consumers, primarily focused on policies aimed at 
decreasing CO2 emissions from non-renewable energy sources. 

This can be interpreted as the implementation of a “just-in-case” 
strategy during periods of lower uncertainty. If the persistence 
continues, households will adopt the behavior of producers and 
adopt a “wait and see” approach, leading to a decrease in their 
usage of renewable energy until climate regulations become more 
definite.

According to Bhattacharyya (2012), CO2 emissions positively 
affect RECHH, similar to their effect on REC. However, the effect 
of CO2 emissions on RECHH becomes more significant during 
periods of increased uncertainty. Household consumers exhibit 
more sensitivity to fluctuations in CO2 emissions than producers 
in the presence of increased uncertainty. Therefore, when the 
climate deteriorates, as indicated by the increase in CO2 emissions, 
households tend to consume more renewable energy to counteract 
these adverse developments.

Table 8 presents the transition probabilities linked to the low and 
high uncertainty regimes for this estimation and the smoothed 
probabilities is shown in Figure 3.

As observed in Table 6, the likelihood of remaining in the 
same regime, based on the preceding regime, is significantly 
high. This is evident from the values of p11 and p22, which are 
0.959 and 0.942, respectively. Meanwhile, the values of p21 
and p12 are 0.058 and 0.041, respectively. The data depicted 
in Figure 3 exhibit a distinct pattern compared to Figure 2, 
although many commonalities persist. For example, although 
the Bush Administration’s refusal to accept the Kyoto Protocol 
may have contributed to greater uncertainty, the transition to a 
low-uncertainty regime happened quickly and was less enduring 
than the previous estimation.

Table 7: MS Estimation Results using Household Renewable Energy Consumption (RECHH)
Regime 1

Variable Coefficient SE t-Statistic Prob.*
C 0.055883*** 0.002237 24.97753 0.0000
Seas ΔLCPU 0.010306** 0.004711 2.187765 0.0287
First ΔLIIP −0.303737 0.207854 −1.461301 0.1439
Seas ΔLCO2 −0.013048 0.051440 −0.253654 0.7998
First ΔLWTI −0.031235 0.023753 −1.315002 0.1885
Log (Sigma) −3.629465*** 0.067222 −53.99235 0.0000

Regime 2
Variable Coefficient Std. Error t−Statistic Prob.*
C −0.058916*** 0.011729 −5.023265 0.0000
Seas ΔLCPU −0.049700** 0.023647 −2.101688 0.0356
First ΔLIIP −0.625660 0.861627 −0.726138 0.4678
Seas ΔLCO2 0.481012** 0.213415 2.253881 0.0242
First ΔLWTI 0.054305 0.110865 0.489831 0.6243
Log (Sigma) −1.963364*** 0.053721 −36.54767 0.0000
Transition Matrix Parameters
P11-SDCPU 0.709087*** 0.081568 8.693173 0.0000
P21-SDCPU −0.627621*** 0.074028 −8.478158 0.0000
Mean dependent var 0.000600 Log-Likelihood 541.5911
S.D. dependent var 0.116254 Akaike Info Criterion −2.554921
Durbin-Watson stat 0.330833 Schwarz Criterion −2.418533
S.E. of regression 0.102462 Hannan-Quinn 

Criterion
−2.500978

*, **, and ***indicate significance level at 10%, 5%, and 1%

Figure 2: Smoothed regime probabilities between 1987 and 2022 for 
main model. This figure shows the smoothed probabilities of state 1 

and state 2 in the sample period. State 1 is the low uncertainty state and 
state 2 is the high uncertainty state
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We also observe that the high uncertainty regime’s persistence has 
occurred in both the Obama and Trump Administrations. Although 
these factors were also included in the previous estimates, they 
were not as persistent. The significant level of uncertainty between 
these two administrations can be attributed to the findings of 
Noailly et al. (2022). They discover that a substantial portion of 
the policy shocks experienced during the Obama Administration 
resulted from implementing new policies to address climate 
change. Conversely, the shocks observed during the Trump 
Administration were primarily caused by the reversal of previous 
policies enacted by the Obama Administration, which aimed to 
reduce carbon emissions. The measures included the Clean Power 
Plan, the US-China agreement on climate change, the Paris Accord, 
and the disapproval of the Keystone XL pipeline project.

The result gives rise to an intriguing conundrum. Although the 
Obama and Trump Administrations had opposing views towards 
their programs, the underlying background behind these policies 
is only sometimes distinct, resulting in both periods experiencing 
increased uncertainty. Recall that Li et al. (2023) find that the 
effect from CPU to REC depends on the regime by which the 
uncertainty originated. Therefore, the relationship between 
CPU and REC may vary based on the contextual views of the 

authorities. We can investigate this potential by eliminating the 
observations made by the Trump Administration. Please note that 
this is not a biased position but rather an opportunity to examine 
the potential contextual factors in the CPU. This is based on 
previous US government documents and academic literature 
suggesting previous administrations in the dataset pursued policies 
to address climate change, regardless of their success (Wampler, 
2015; Royden, 2002; Blanchard, 2003). Therefore, based on past 
research, this exclusion would lead to overall positive shocks in 
CPU. The estimation outcome of the MS model of the CPU on 
REC is presented in Table 9.

The findings in Table 9 indicate a high degree of similarity to 
those in Table 5, as the variables that exhibit statistical significance 
remain consistent. However, it is important to observe that the effect 
of CPU on REC in the high uncertainty regime has diminished. 
Initially, it was −0.039, but it has now fallen to −0.028, resulting 
in a 0.01% point rise. Nevertheless, the coefficient of IIP saw a 
fall from 1.229 to 1.15, indicating a reduction of 0.08% points. 
Similar to the findings of Li et al. (2022), we have discovered 
compelling evidence that the specific circumstances surrounding 
CPU shocks can have different effects on REC.

Table 10 presents the transition probabilities derived from the 
estimation in Table 9, whereas Figure 4 displays the smoothed 
regime probabilities. The likelihood of staying within the same 
regime, as observed in the Trump administration, remains quite 
high, with p11 and p22 are 0.943 and 0.931, respectively. Meanwhile, 
the values of p21 and p12 are 0.069 and 0.057, respectively. The 
results depicted in Figure 4 are mainly similar to those in Figure 2, 
with the notable distinction being the exclusion of data following 
the conclusion of the Obama Administration.

In order to further check the robustness of the previous findings, 
a comparable estimation using the ENVPU index developed 
by Noailly et al. (2022) is conducted as an alternative to the 
CPU index. It is important to remember that these indices are 
conceptually comparable and intended to capture similar shocks 
despite their distinct origin. The findings of this estimation are 
presented in Table 11.

While the main estimation and the estimation findings in Table 11 
come to a similar conclusion, there has been a slight difference 
in the regime results. Specifically, the high uncertainty regime 
is now represented by st=1, while the low uncertainty regime is 
represented by st=2. The variables that are statistically significant 
remain unchanged, with CPU and IIP having a large effect on REC 
during the period of high uncertainty. The primary distinction 
between the two outcomes is that both coefficients have exhibited 
a more pronounced positive trend. Specifically, the CPU has risen 
by 0.004% points, while the IIP has experienced a substantial 
increase of 0.362% points.

Table 12 indicates that the transition probabilities are comparable, 
since they remain above 0.90 when moving between regimes 
based on the previous regime. Nevertheless, the likelihood of 
staying in the low uncertainty regime p22 is significantly higher 
than the likelihood of staying in the high uncertainty regime p11. 

Figure 3: Smoothed regime probabilities between 1987 and 2022 for 
RECHH model. This figure shows the smoothed probabilities of state 1 
and state 2 in the sample period. State 1 is the low uncertainty state and 

state 2 is the high uncertainty state

Table 8: Transition probabilities for RECHH estimation
Time-varying transition probabilities

P (i, k)=P (s (t)=k|s (t-1)=i)
(row=i/column=k)

Mean 1 2
1 0.958662 0.041338
2 0.057952 0.942048
SD 1 2
1 0.012311 0.012311
2 0.015088 0.015088

Time-varying expected durations
1 2

Mean 26.75776 18.62534
SD 9.518898 5.677899
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Table 9: MS estimation results on REC prior to the trump administration
Regime 1

Variable Coefficient SE t-statistic Prob.*
C 0.072703*** 0.005277 13.77709 0.0000
Seas ΔLCPU 0.000113 0.009379 0.012092 0.9904
First ΔLIIP −0.539482 0.468860 −1.150627 0.2499
Seas ΔLCO2 0.163297 0.101651 1.606444 0.1082
First ΔLWTI 0.018192 0.047054 0.386630 0.6990
Log (Sigma) −2.975074*** 0.057192 −52.01882 0.0000

Regime 2
Variable Coefficient Std. Error t-Statistic Prob.*
C −0.043088*** 0.007571 −5.690843 0.0000
Seas ΔLCPU −0.028021** 0.013739 −2.039538 0.0414
First ΔLIIP 1.150276* 0.662209 1.737027 0.0824
Seas ΔLCO2 0.025466 0.163966 0.155315 0.8766
First ΔLWTI 0.088745 0.071150 1.247301 0.2123
Log (Sigma) −2.795352*** 0.063807 −43.80943 0.0000
Transition Matrix Parameters
P11-SDLCPU 0.647640*** 0.084036 7.706704 0.0000
P21-SDLCPU −0.600531*** 0.089617 −6.701101 0.0000
Mean dependent var 0.021915 Log-Likelihood 465.8470
S.D. dependent var 0.080520 Akaike Info Criterion −2.611832
Durbin-Watson stat 1.020107 Schwarz Criterion −2.456196
S.E. of regression 0.061818 Hannan-Quinn Criterion −2.549858
*, **, and ***indicate significance level at 10%, 5%, and 1%

Table 10: Transition Probabilities for MS Estimation 
without Trump Administration

Time-varying transition probabilities
P (i, k)=P (s (t)=k|s (t-1)=i)

(row=i/column=k)
Mean 1 2
1 0.942889 0.057111
2 0.069009 0.930991
SD 1 2
1 0.012221 0.012221
2 0.013494 0.013494

Time-varying expected durations
1 2

Mean 18.31767 15.04926
SD 3.995922 2.996189

Figure 4: Smoothed Regime Probabilities between 1987-2017 for MS 
Model without trump administration. This figure shows the smoothed 
probabilities of state 1 and state 2 in the sample period. State 1 is the 

low uncertainty state and state 2 is the high uncertainty state

Figure 5 displays the smoothed probability of the low and high-
uncertainty domains. Although the patterns exhibit similarities, 
the differences between the regimes are less prone to sudden and 
extreme fluctuations as compared to the original model utilizing 
the CPU.

The variations in the outcomes’ magnitude can be attributed to 
the dissimilarities in the CPU’s measure by Gavriilidis (2021) and 
the ENVPU by Noailly et al. (2022). It is worth noting that while 
Gavriilidis (2021) employ a simplistic classification approach 
based on Baker et al. (2016), Noailly et al. (2022) utilize an SVM 
algorithm to classify articles that indicate uncertainty in order to 
construct their index.

Noailly et al. (2022) find that while comparing their approach to 
the one used by Baker et al. (2016), the SVM algorithm had a 
higher recall rate. This means that the SVM algorithm was able 
to identify more true positives compared to the naïve method 

employed in the CPU. The ENVPU contains more information 
than the CPU, potentially resulting in variations in the index’s 
volatility, as suggested by Noailly et al. (2022). Based on our 
analysis of the correlations and volatility of the indices shown in 
Table 13 and Figure 6, we have determined that the CPU exhibits 
significantly higher volatility than the ENVPU. This holds true 
for both in the level and first-differences.

Furthermore, it is plausible that there exist substantial variations 
in the magnitudes of the uncertainty that has been documented. 
Figure 7 illustrates a significant surge in CPU about 2017, 
although the ENVPU did not experience a comparable level of 
increase. Moreover, until the year 2000, the ENVPU appears to 
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Table 12: Transition Probabilities for MS Estimation 
using the ENVPU

Time-varying transition probabilities
P (i, k)=P (s (t) = k|s (t-1)=i)

(row=i/column=k)
Mean 1 2
1 0.913744 0.086256
2 0.045512 0.954488
SD 1 2
1 0.010786 0.010786
2 0.007724 0.007724

Time-varying expected durations
1 2

Mean 11.77114 22.58885
SD 1.442670 3.724887

Table 11: MS estimation results on REC using the ENVPU
Regime 1

Variable Coefficient SE t-statistic Prob.*
C −0.056072*** 0.009567 −5.860909 0.0000
Seas ΔLENVPU −0.034661* 0.019417 −1.785104 0.0742
First ΔLIIP 1.591850** 0.795867 2.000145 0.0455
Seas ΔLCO2 −0.058172 0.181567 −0.320389 0.7487
First ΔLWTI 0.075318 0.095221 0.790974 0.4290
Log (Sigma) −2.790310*** 0.075207 −37.10187 0.0000

Regime 2
Variable Coefficient Std. Error t-Statistic Prob.*
C 0.060259*** 0.005143 11.71564 0.0000
Seas ΔLENVPU 0.010047 0.013162 0.763386 0.4452
First ΔLIIP −0.288903 0.465634 −0.620452 0.5350
Seas ΔLCO2 0.060800 0.093637 0.649314 0.5161
First ΔLWTI 0.004209 0.044267 0.095089 0.9242
Log (Sigma) −2.983415*** 0.055818 −53.44922 0.0000
Transition Matrix Parameters
P11-SDLENVPU 0.517586*** 0.087826 5.893328 0.0000
P21-SDLENVPU −0.668264*** 0.083318 −8.020686 0.0000
Mean dependent var 0.022189 Log-Likelihood 466.2835
S.D. dependent var 0.077093 Akaike Info Criterion −2.668339
Durbin−Watson stat 1.024387 Schwarz Criterion −2.510333
S.E. of regression 0.060105 Hannan−Quinn Criterion −2.605374
*, **, and ***indicate significance level at 10%, 5%, and 1%

Figure 5: Smoothed Regime Probabilities between 1991 and 2019 
using the ENVPU. This figure shows the smoothed probabilities of 

state 1 and state 2 in the sample period. State 1 is the high uncertainty 
state and state 2 is the low uncertainty state

be comparatively higher in comparison to the CPU. Therefore, it 
appears that the CPU experiences significantly higher levels of 
uncertainty around the turn of the millennia and during the period 
that aligns with the Trump Administration.

Referring to the studies conducted by Li et al. (2022) and Noailly 
et al. (2022), it is suggested that the uncertainty observed during 
the Trump Administration may be connected to policies that do 

not support efforts to address climate change and encourage the 
use of non-renewable energy sources. This uncertainty likely 
intensified the negative relationship between the central processing 
unit (CPU) and renewable energy consumption (REC) in a period 
of high uncertainty. The ENVPU is quite stable and not prone to 
volatility.

Therefore, the utilization of the MS model with the ENVPU as 
the main variable of focus has resulted in a noteworthy finding. 
This finding contributes to our knowledge of the relationship 
between CPU and REC, as well as the development of an index 
to measure and represent this uncertainty. Based on these data, 
we can confidently infer the presence of a nonlinear relationship 

Table 13: Correlation matrix and volatility of CPU and 
ENVPU
Correlation CPU ENVPU SD Volatility
CPU 1.000000 55.65215 1147.298
ENVPU 0.189888 1.000000 25.51904 478.0983
Correlation ΔCPU ΔENVPU SD Volatility
ΔCPU 1.000000 0.458980 9.327576
ΔENVPU 0.215021 1.00000 0.321928 5.927323
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between the CPU and REC. Therefore, it is important to thoroughly 
examine the construction of the climate policy uncertainty index, 
which is designed to quantify the level of uncertainty around 
climate policies.

5. CONCLUSION

Climate change is a crucial concern for the future of the planet, 
which influences the global economy and the environment. With 
various international agreements and national efforts to achieve 
carbon neutrality, it is vital to understand what policies must 
be implemented and how they should be delivered. Due to this 
immense global target, the goal of the recent COP26 was to attain 
net zero emissions, understand how policies are implemented, 
and how uncertainty affects economic actors’ behavior towards 
renewable energy consumption.

The main findings of our study suggest that climate policy 
uncertainty, as measured by the CPU and ENVPU, has a nonlinear 
effect on REC. The baseline findings indicate that the CPU 
negatively affects the REC in the high uncertainty regime. This 
suggests that businesses adopt a cautious approach, commonly 
referred to as a “wait and see” policy, which aligns with the 
findings of Syed et al. (2023). Consumers would reduce their 

renewable energy consumption in favor of other sources to avoid 
the financial risks associated with renewable alternatives.

To assess the robustness of this model, we conduct an additional 
study utilizing the RECHH, through which we identified a 
comparable result. While the effect in the high-uncertainty range 
is also negative, there is a significant positive effect of CPU on 
REC in the low uncertainty regime, which suggests a “just-in-
case” policy approach, where consumers will increase REC if 
uncertainty increases but remains within the low uncertainty 
regime, anticipating more favorable policies in the future. These 
findings align with the research conducted by Zhou et al. (2023), 
which likewise identified a positive relationship between CPU 
and REC over various time intervals.

To investigate the potential variations in the effect of CPU on 
REC, depending on the specific circumstances surrounding the 
CPU shocks, we use the approach of Li et al. (2022) and Noailly 
et al. (2022) by eliminating the observations related to the Trump 
Administration as a substitute for a positive CPU. Despite 
acknowledging the difficulty of this assumption, we find support 
for it from examining policy reviews in previous studies (Wampler, 
2015; Royden, 2002; Blanchard, 2003) and the research conducted 
by Li et al. (2022). Consequently, this assumption is justifiable 
for investigating the potential dynamics involved. Our findings 
indicate that without the Trump Administration’s observations, 
the effect from CPU to REC has become more positive, despite 
the result of the CPU to REC still being negative in the high 
uncertainty regime.

We perform an additional robustness check by using the 
Environmental Policy Uncertainty (ENVPU) index developed 
by Noailly et al. (2022). The robustness estimation demonstrate 
comparable effects to the baseline estimates, albeit with coefficients 
of greater positivity. Due to its higher recall rate than the CPU, 
the ENVPU exhibits less volatility and achieves a greater number 
of true positives, potentially impacting the model’s outcomes. 
Therefore, unlike the CPU, the ENVPU does not intensify the 
shock experienced under the Trump Administration.

With several robustness tests we perform, thus, we can conclude 
that CPU has a detrimental nonlinear effect on REC, regardless of 
the specific index used, type of REC, and the contextual views of 
the policies (i.e., in favour vs. against climate change). According 
to Syed et al. (2023), economic agents tend to adopt a cautious 
approach called a “wait and see” policy when there is significant 
uncertainty in climate policy. This means they delay making 
decisions on REC until the uncertainty falls.

There are some caveats to consider in this study, for example 
the inability to precisely factor in the contextual dynamics that 
underlie the CPU index. Contrary to economic policy uncertainty, 
which involves subjective assessments of a policy’s positive or 
negative impact and the trade-offs involved, climate policy can 
be objectively determined by evaluating its position on reducing 
climate change and promoting environmental protection (Basaglia 
et al., 2022). Despite its weakness, our research attempt to address 
this issue by making an estimation that does not consider the 

Figure 6: Seasonally differenced log-transformed version of 
selected variables

Figure 7: Raw CPU (Gavriilidis, 2021) and ENVPU 
(Noailly et al., 2022) comparison
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influence of the Trump Administration, thus assuming that the 
CPU index would have been predominantly positive. The absence 
of raw data imposes further constraints on this investigation, 
preventing us from making inferences about the Optimistic-CPU 
and Pessimistic-CPU indices, as formulated by Berestycki et al. 
(2022) and Basaglia et al. (2022). Hence, a suggestion for the 
subsequent scholarly investigation on CPU would be to integrate 
the evolving characteristic of this uncertainty. To enhance the 
accuracy of the index’s development, it is advisable to adopt the 
methodology proposed by Noailly et al. (2022). Additionally, 
incorporating the findings of Berestycki et al. (2022) and Basaglia 
et al. (2022) will enable the inclusion of both positive and negative 
dynamics nature of the climate policies.

For policymakers, an important observation from these findings 
is the need to ensure that climate policies are implemented and 
communicated efficiently to minimize the negative consequences 
of uncertainties. Improving consumer transparency and confidence 
may be a more practical approach since this would allow other 
variables to determine the REC-thus, enabling policymakers to 
formulate policies that influence these variables to stimulate REC 
growth. With respect to developing countries, this study has two 
consequences. The first is in line with the overall suggestion of 
minimizing uncertainty. The second point is to acknowledge that 
if uncertainty increases and continues at a high level, the specific 
policy framework, such as whether it supports or opposes carbon 
neutrality, can mitigate the effect of CPU on REC. If policymakers 
in developing countries consider carbon neutrality necessary, they 
should implement policies that do not impede this initiative. Even 
if uncertainty exceeds a certain threshold, consumer behavior may 
still support increased renewable energy consumption.
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