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Predicting stock return and volatility with machine learning and econometric
models — a comparative case study of the Baltic stock market

Anders Nou'!, Darya Lapitskaya?, M. Hakan Eratalay?, Rajesh Sharma*

Abstract

For stock market predictions, the essence of the problem is usually predicting the magnitude and
direction of the stock price movement as accurately as possible. There are different approaches
(e.g., econometrics and machine learning) for predicting stock returns. However, it is non-trivial to
find an approach which works the best. In this paper, we make a thorough analysis of the predictive
accuracy of different machine learning and econometric approaches for predicting the returns and
volatilities on the OMX Baltic Benchmark price index, which is a relatively less researched stock
market. Our results show that the machine learning methods, namely the support vector regression
and k-nearest neighbours, predict the returns better than autoregressive moving average models for
most of the metrics, while for the other approaches, the results were not conclusive. Our analysis
also highlighted that training and testing sample size plays an important role on the outcome of
machine learning approaches.
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1 Introduction

The active development of the stock markets in the Baltic region started after the Soviet Union
collapsed. The first stock exchange that opened in the Baltic region was the Vilnius stock exchange
in 1993 (Nikkinen et al.,[2012), followed by the Riga stock exchange in the same year (Nikkinen
et al., [2012). Two years later, the Tallinn stock exchange was opened in 1995 (Nikkinen et al.,
2012). Currently, these three stock exchanges are part of the joint Baltic market that was established
to reduce trade barriers between the Baltic countries, and at the moment, they operate under the
NASDAQ Baltic index. As of 22 April 2021, the main list of the NASDAQ Baltic includes a total
of 32 companies, and the secondary list contains 28 companies®. Interestingly, the Baltic stock
exchange has recently demonstrated large growth: while in 2019, the total turnover of the stock
exchange was approximately 260 million euros, in 2020, the total turnover was approximately 444
million euros®.

The research is motivated by the fact that recently, in Baltic countries, interest in investing in the
stock market has grown due to the popularisation of investment and the favourable trading conditions
of banks (Suimets, 2020); however, while other stock exchanges use different techniques, such as
automated trading, quantitative analysis, and various econometric models’-®, upon the preliminary
research on current methods used in the Baltic stock market, we did not find the application of
automated trading transactions or machine learning models. Moreover, unlike larger markets, there
are very few attempts to apply machine learning and neural network models in the studies of the
Baltic region.

This paper aims to provide researchers and investors with a comparison of various machine
learning and econometric approaches for time series analysis and for predicting stock returns and
volatility in the Baltic stock market. The motivation for this research lies in the fact that the Baltic
stock market has been studied very little in terms of the application of machine learning and financial
models. For instance, examples of related works include the work by Grigoryan et al. (2015) who
used the artificial neural network model to predict the daily stock price of the Tallink Group AS
(TALIT); and the study by Ercan (2017) who used the artificial neural network model to predict the
OMX Baltic Benchmark GI (OMXBBG]I) index value.

In this research, we use machine learning (random forest, KNN, SVR), econometric models
(ARMA, GARCH), and a hybrid model of artificial neural networks and an econometric model
(GARCH-ANN) for predicting the Baltic stock returns and volatilities. The contribution of this paper
to the literature is of empirical nature. We tune each model to get its best predictive performance.

>https://nasdagbaltic.com/statistics/en/shares, retrieved on 22.04.2021

®https://nasdagbaltic.com/statistics/en/statistics, retrieved on 22.04.2021

Thttps://www.cnbc.com/2019/06/28/80percent-of-the-stock-market-is-now-on-autopilot.html,  retrieved on
26.02.2021

8https://www.mordorintelligence.com/industry-reports/algorithmic-trading-market, retrieved on 30.01.2021
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After obtaining the results from the best configurations, we make comparisons across the models
for training and testing different sample sizes and using various metrics. In this study we focus on
the Baltic market and use the OMX Baltic Benchmark Price Index daily data from 04.09.2001 to
01.03.2021. Our results indicate that for predicting returns, machine learning models, in particular
support vector regression and k-nearest neighbour methods, performed better; and, for volatility
predictions, the performances of GARCH and GARCH-ANN were comparable, depending on the
favoured evaluation metric. From our exhaustive analysis, we can infer that a model’s predictive
performance (calculated using various evaluation metrics) depends on the choice of the predictors,
and on the split size between the training and testing samples. In addition, for identifying the best
model it is important not to trust default parameters as in some cases, we found that after tuning the
parameters, the results got better (compared to the default parameter settings).

The paper is organised as follows: the first section briefly describes the problem, the goal, and
the motivation behind the problem. The second section provides an overview of related works and
explains the background of the study. The third section gives an overview of the data used. The
fourth section is dedicated to describing the methodology; that is, the programming of machine
learning and econometric models. The fifth section summarises the results of the different models
and compares the machine learning and econometric models. And, the sixth section concludes the

results of the study and provides recommendations for further improvements.

2 Background

In this section, we discuss different approaches that researchers apply for predicting stock returns
and for financial analysis, namely, econometric (Section [2.1), machine learning (Section [2.2)), and
hybrid ones (Section 2.3).

2.1 Econometric models

The researchers extensively use various econometric models to predict the stock price and volatility.
For instance, autoregressive—moving-average (ARMA) and generalised autoregressive conditional
heteroscedasticity (GARCH) models are actively used in numerous works (Herwartz, 2017; Hu
et al., 2020; Oberholzer & Venter, |2015; Rounaghi & Zadeh, 2016). In particular, in the research by
Rounaghi and Zadeh (2016)), the authors create an ARMA model to forecast the yearly and monthly
stock returns of the S&P 500 Index and the London Stock Exchange and propose that this model
can be used to predict medium or long horizons for the specified stock exchanges.

In addition, different variations of GARCH models are used in the literature (Herwartz, 2017)).
For example, Oberholzer and Venter (2015) apply the GARCH model to the South African stock

exchange (JSE) and use the Akaike and Schwarz information criteria to evaluate its performance.
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Moreover, both ARMA and GARCH models can be used to analyse fitting and prediction effects.
For instance, in the research by Hu et al. (2020), the authors show that the GARCH model performs
better in the fitting effect, and the ARMA is better for the prediction effect. Interestingly, in another
work, the combination of ARMA and GARCH has also been used to predict Dow and S&P 500
Indices, and the results show that such models are effective for financial analysis (Wang et al.,
2009).

2.2 Machine Learning based models

In addition to econometric models, in recent years, machine learning techniques have been actively
used for financial analysis and forecast (Khan et al., 2020). The main reason behind this trend
is that usually, machine learning usage overcomes limitations of traditional econometric models
(Rossi, [2018)). In addition, we can observe that some machine learning algorithms demonstrate high
accuracy and high predictive powers compared to traditional econometric models when used for
stock returns predictions (Lapitskaya et al., 2021). In this approach, various learning methods are
used by researchers. For example, the support vector machine is a widely applied machine learning
algorithm in time series forecasts (Ballings et al., 2015 Choudhry & Garg, 2008; Huang et al.,
2005; Kara et al., 2011} Patel et al., 2015), and it provides higher accuracy through cross-validation
(Li et al., 2018)). Furthermore, logistic regression and random forest models are extensively used in
this research area (Ballings et al., 2015; Long et al., 2019; Patel et al., 2015).

In general, the problem has been analysed from classification and regression perspectives. In
particular, from the classification side, random forest and support vector machine models are used in
several works to predict the direction of the stock price of Samsung, Apple, General Electric, and the
Tokyo Stock Exchange index Nikkei 225 (Huang et al., 2005; Khaidem et al., 2016). Furthermore,
such machine learning models as the kernel factory, AdaBoost, K-nearest neighbours, logistic
regression, random forest, and support vector machine are used to predict the direction of stock
prices on the European markets (Choudhry & Garg, 2008; Huang et al., [2005; Kara et al., 2011;
Khaidem et al., 2016; Long et al., 2019; Nelson et al.,|[2017} Patel et al., 2015), where random forest
and support vector machine models demonstrate the most accurate results (Ballings et al., 2015). At
the same time, hybrid models can also be used in such cases. Interestingly, a hybrid model using a
genetic algorithm and support vector machine performs better than the standalone support vector
machine model (Choudhry & Garg, |[2008).

At the same time, other works model a prediction problem as a regression one. For example, in
the study by Trafalis and Ince (2000), the researchers employ support vector regression (SVR) for
predicting the prices of IBM, Yahoo, and America Online. And in a different work, the combinations
of machine learning algorithms and neural networks were used for the analysis of the Bombay
Stock exchange (Patel et al., 2015)). There, the authors concluded that the two-stage hybrid models
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perform better than the single-stage prediction models.

2.3 Neural networks

Though many studies have implemented numerous machine learning models, some researchers
have also used artificial neural networks and their variations to analyse similar problems (Chen
et al., [2015; Dash & Dash, 2016; Kara et al., 2011; Long et al., 2019; Nelson et al., [2017). In
general, artificial neural networks (ANNs) are among the most useful methods of volatility and price
forecasting (Wanjawa & Muchemi, 2015). They present a non-parametric model that facilitates time
series modelling (Yeze & Yiying, 2019). These models have an advantage in modelling complex
non-linear relationships, and they can relate a set of input variables to one or more output target
variables that contain non-linear latent units to achieve significant flexibility (Kim & Enke, 2016).

Researchers use ANNs with the regression problem of stock price or return predictions. For
example, Jang and Lee (2017) use Bayesian neural networks to predict Bitcoin prices, and in the
study by Ticknor (2013), a Bayesian regularised artificial neural network is used to predict the
one-day future stock prices of Microsoft and Goldman Sachs. Moreover, different variations of
neural networks are also actively used. For example, the long short-term memory (LSTM) neural
network, multi-filters neural network (MFNN), computational efficient functional link artificial
neural network (CEFLANN), and ANNs have been used on numerous stock exchanges (Chen et al.,
2015 Dash & Dash, 2016} Kara et al., 2011; Long et al.,[2019; Nelson et al., [2017).

Interestingly, the combination of the GARCH model and neural networks can also be applied in
some cases. For instance, some examples prove that a hybrid GARCH-ANN can perform better
than traditional GARCH models in terms of volatility forecasts (Liu & So, [2020). So, from the
literature, we can see that although neural networks are used more widely and might generally
perform better than machine learning models, there is still less research on the Baltic stock market
using such methodologies.

Different methods can be used for evaluating the model’s performance. For instance, Rounaghi
and Zadeh (2016) use mean absolute error, mean absolute percentage error, median absolute
percentage error, symmetric median absolute percentage error and the mean absolute scaled error
to evaluate econometric models. In addition, Shah (2007) uses mean absolute error, root mean
squared error, relative absolute error, and root relative squared error for evaluating machine learning
models.

3 Data and Methods

This section is dedicated to the description of the dataset and the research methodology, where

we introduce the data (Subsection [3.I) and the econometric (Subsection [3.2)), machine learning
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(Subsection and hybrid models (Subsection for the prediction tasks.

3.1 Data

The OMX Baltic Benchmark Price Index (OMXBBPI) is chosen for this study because it contains
the Baltic market’s largest and most traded companies. One of the sources that offers information
about the Baltic stock market is the website investing.com °, from where the daily price data is
obtained for this research due to the number of entries and the available columns for calculating
volatility. The time range of the data in consideration is from 4 September 2001 to 1 March 2021.
This data range allows us to consider nearly 20 years, which covers many different financial and
economic circumstances, including the 2008 financial crisis and the Covid-19 period. Based on
our results, we can conclude that the predictive ability of the models in this paper is robust to these
changes in the data.

In this work, the stock returns are predicted by both the econometric models (ARMA) and
machine learning models. Next, we describe various equations and notations which are used in this

work.

1. Equation|l|shows the return calculation for an observed period, where F; is the daily adjusted

closing price of the stock market index.

re = (P, — Pi_1) /Py = log(P;) — log(Pi-1) (D

2. Volatility is measured as either the standard deviation or variance between returns from the
same security or market index (Daly, 2008)). There are several ways to estimate the volatility
of a stock or index. One option to find the volatility of a security is through a volatility
index for a specific market. For example, the VIX index tracks the volatility based on S&P
500 index options. However, an index that tracks the volatility of the Nasdaq Baltic market
does not exist. Another option is to calculate the realised volatility of the index, which is
the sum of squared returns for a period. Calculating the daily realised volatility requires
intraday data, which is not available for the OMX Baltic Benchmark Price Index. Therefore,
an alternative approach is needed. There are several alternative equations to calculate the
estimated volatility. One of them is the Garman and Klass approach (Lebedeva, 2018]) that
is shown in Equation [2| where H;;, L;;, Oy, C;; are high, low, open and close values for a

security respectively. In this Equation, i represents the series, and ¢ represents time.

%https://www.investing.com/
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o4 = 0.511(log Hy, — log Ly)?
— 0.019[(log Cy; — log Oy ) (log Hy + log Ly — 21og Oy) (2)
— 2(log Hy, — log O;;)(log Ly — log Oy)] — 0.383(log Cyy — log Oy;)?

3. In this paper, we use the return variable for the model estimation. First, we consider z number
of previous returns, where z is the number of previous days of the data record. Then, we
consider a minimum of 1 and a maximum of 30 for the value of z. For machine learning,
several additional features are used for fitting the models. These are the high, low, close and
open values. The high and low values are the highest and lowest prices of a specific period
respectively; and, the open value is the price at the start of the trading day, while the close

value is the price at the end of the trading day.

3.2 Econometric models
3.2.1 ARMA

The autoregressive moving average (ARMA) model, first introduced by Whittle (1951), is widely
used in statistical analysis of time series. While constructing the ARMA model, the optimal p and q
lags have to be chosen, which can be done with several methods. One way to do that is to calculate
the autocorrelation and partial autocorrelations for the time series at hand. The respective plots for

partial autocorrelation and autocorrelation lags are shown in figures[I]and [2] respectively.

For partial autocorrelation and autocorrelation, there is a sharp drop after one lag. Consequently,
the most optimal orders of p and q are ones according to the plots. However, in both plots, a
considerable autocorrelation can be observed for lags between 2 and 14, with some exceptions. In
both cases, the correlation drops off, with some exceptions of small spikes for some lags. After the
optimal orders of p and q are determined, the best performing model is compared with the best
performing machine learning models. Furthermore, the outperforming ARMA model is applied for

the sliding window method.
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Figure 1. Partial autocorrelation of OMXBBPI time series
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Figure 2. Autocorrelation of OMXBBPI time series

3.2.2 GARCH

The generalised autoregressive conditionally heteroscedastic (GARCH) model is based on the
autoregressive conditional heteroscedasticity (ARCH) model generalised by Bollerslev (1986) by
including past conditional variances.

For the GARCH model, similar tests as used on the ARMA model (described in Section[3.2.1)
are carried out to have a fair comparison. The GARCH model with the most optimal (p,q) orders is
also used for the GARCH-ANN hybrid model. Later on, the GARCH model is compared with the
GARCH-ANN model.
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3.3 Machine learning models

This study uses three different machine learning methods: the random forest, support vector machine
(SVM), and K-nearest neighbours (KNN).

3.3.1 Random forest

Random forest is a supervised learning algorithm proposed by Breiman (2001). The algorithm
consists of creating several trees that each cast a vote for the most popular class. Essentially, the

random forest consists of several decision trees that use randomly selected inputs.

3.3.2 Support vector regression

Support vector regression (SVR) is a supervised learning model based on the Vapnik-Chervonenkis
theory (Awad & Khanna, 2015). SVR is used for the regression problem; meanwhile, SVM is the
analogue version of the SVR technique and is used for classification problems. The general idea of

the SVM is to find a hyperplane in a multidimensional space that separates the classification targets
(Noble, 2006).

3.3.3 K-nearest neighbours

KNN is an algorithm that predicts the target value based on the k nearest neighbours of the observed
features (Garcia-Laencina et al., 2009; Guo et al., 2003). The prediction is decided on a majority
vote, which is similar to the random forest decision tree forecasting explained in Section [3.3.1]
The KNN method can be applied for classification and regression problems (Ban et al., [2013;
Garcia-Laencina et al., 2009)). The KNN is described as a simple and intuitive but low-performance
learning method (Ban et al., 2013; Guo et al.,2003). The effectiveness of the model is also heavily
dependent on an optimal value for k.

3.4 GARCH-ANN

GARCH-ANN is a hybrid model composed of the GARCH model (described in Section [3.2.2)) and
an artificial neural network (ANN) model. Generally, the hybrid model is created in the following
way: first, the GARCH model is created and fitted, and the predictions of the previously constructed
GARCH model are used to fit the ANN model. Then, the fitted ANN model is used to predict the
target value, and the target is then evaluated with the actual value.

As for the specific ANN implementation model, first, we test several ANN structures. The

model’s structure optimisation consists of modifying the number of layers and the dimensionality of
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the layer’s output space '°. The dropout layer, which assists in avoiding overfitting, is also included
in some cases '!. The activation layer functions and optimisers are cross-tested to find the best
combination of the layer activation functions and the optimiser for the ANN model. Finally, the
best performing ANN structure, layer activation function and optimiser combination are used for

the sliding window method.

4 Evaluation

In this section, we discuss various evaluation metrics and then present the results.

4.1 Experimental setup

It is important to note that traditionally, machine learning estimation involves shuffling the data
and splitting the dataset to train and test sets. However, when dealing with a time series problem,
the dataset cannot be split because the order of observations is essential. Therefore, to perform
cross-validation methods when dealing with a time series problem, the sliding window method is
used (Yu et al., [2014). The sliding window technique means choosing the training and test sets
that have constant size throughout the cross-validation process. After each iteration, the test data is
added to the training data, and a chunk that has the size of the test data is removed from the start of
the training set. Furthermore, the sliding window technique shows whether it is more beneficial
to use either the whole dataset or a smaller amount of data to forecast future values. Hence, the
sliding window method is carried out for all the models: ARMA, machine learning, GARCH and
GARCH-ANN. In this study, the training window sizes are 1000, 500, 365, 300 or 100 and the
test window size is 5 or 10 to be able to work with short-term forecasting. Nakajima (2017) uses a
similar approach to construct sliding window samples with a training window size of 10 and a test
window size of 5.

As for choosing the training and testing test sizes, a 70% / 30% split is used for all the machine
learning approaches, since we found that this split size is the most optimal. For example, the most
optimal GARCH(p,q) model is compared with the best performing GARCH-ANN model with a
70% / 30% split and then compared in the sliding window method. After the fitting is done, the
models are used to predict the returns. Later, the predictions are compared with the actual values,
and the prediction errors are calculated.

The overall testing and optimisation procedure consists of three parts. First, the optimal features
are chosen for each model out of the two sets of features that are tested:

* z number of previous returns;

Ohttps://www.tensorflow.org/apigocs/python /t f [ keras/layers/ Dense, retrievedon24.04.2021
https://www.tensorflow.org/apigocs /python /tf /keras/layers / Dropout, retrievedon24.01.2021
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* z number of previous returns, and high, low, close and open values.

Afterwards, the best performing feature set is chosen for each model, and parameter optimisation
is carried out to maximise the effectiveness of the models. In addition, the sliding window method
is implemented for each model to measure the effects of adjusting the size of the training size and
the range of the prediction size. In the next step the machine learning methods are compared to
determine the model with the best predictive performance in the standard method and the sliding
window method. Finally, the best-performing machine learning model is compared with the ARMA

model.

4.2 Metrics

In this paper, we use six evaluation metrics: mean absolute error, mean absolute percentage error,
symmetric mean absolute percentage error, mean squared error, root mean square error and the
histograms of standardized residuals. In the equations presented below, y; is the prediction value,
x 1s the actual value, and n denotes the forecast horizon. The description of the metrics are also
presented below.

1) Mean absolute error (MAE) is a statistical metric used to measure a model’s performance
(Chai & Draxler, 2014). MAE is also often compared with root mean square error and is considered
to be a better metric (Chai & Draxler, [2014; Willmott & Matsuura, 2005). MAE is calculated using
the following Equation [3|(Chai & Draxler, 2014):

1 n
t=1

2) Mean absolute percentage error (MAPE) offers an interpretation of the relative error, which
helps to evaluate the results better. Equation ] shows the calculation of MAPE (Kim & Kim, 2016):

Yt — Ty

1 n
MAPE = — Z m

n
t=1

4)

3) Symmetric mean absolute percentage error (SMAPE) is also used as one of the metrics. A
variation of the original equation introduced by Armstrong (1985) is used in this paper as shown in
Equation [5

n

’yt_l't‘
MAPE =1 —
: /"2 Gl el 2

The bounds of SMAPE are [0, 200%] and the maximum value of the range is 200% because of

the division by two in the denominator.

&)
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4) Mean squared error (MSE) presents the quantitative level of error or similarity between two
values (Wang & Bovik, [2009). The range of MSE is [0, co] and Equation [ shows the calculation of
MSE (Wang & Bovik, [2009):

1 n
t=1

5) Root mean square error (RMSE) represents the square root of the MSE metric. The scale of
the RMSE is [0, oo] and is presented in the same unit of measurement as the observed values of x

and y in the equation. Equation[7|below demonstrates the calculation of RMSE:

n

1
RMSE = N Z(yt - xt)z (7

t=1
6) Standardised residuals (SR) show the strength of the difference between the observed value and
the actual value (Everitt & Skrondal, n.d.). The goal of using standardised residuals is to compare
the overall predictive performance of using the econometric and machine learning models. The
closer to zero the standardised residuals, the more effective a model. In this paper, the absolute
values of standardised residuals are taken. Then, the mean absolute value is calculated to compare
the strength of the chosen models.

Here, we calculate two sets of standardised residuals. We use Equation [§] to calculate the
standardised residuals for econometric models.

ARMA forecast error

SR1 = 8
v/ GARCH volatility forecast ®

Equation [9] shows how to calculate the standardised residuals for machine learning models.

SRy Machine learning forecast error ©)
~ /GARCH-ANN volatility forecast

Standardised residuals are calculated for the standard method and the sliding window method

for all models. Regarding the sliding window method parameters, a training size of 1000 and a
test size of 5 are chosen. Also, the mean absolute values of standardised residuals are calculated to

compare different approaches and methods.

4.3 Model tuning

In this subsection, we give a brief overview of our approach to interpreting the results. First, we
interpret the results of the ARMA model. Here, we choose the optimal model and then apply the
sliding window method to determine appropriate training and test sizes. After that, we decide on

the optimal set of features for machine learning models. Then, we optimise the models’ parameters
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and compare them with the default parameter models. Furthermore, the sliding window method
is applied to each machine learning model. Based on that, the best performing machine learning
method is determined. Later, the ARMA and machine learning models are compared in the standard
and sliding window methods to determine which approach is better in predicting the OMX Baltic

Benchmark Price Index return.

For the GARCH model, first, different orders of p and q are considered to determine the optimal
lags. Second, the GARCH model is used for the sliding window method with the optimal p and
q determined from the first step. Finally, the optimal training and test sizes are selected from the
sliding window test. In the case of GARCH-ANN, the best performing GARCH model forecasts
are used as the neural network model inputs to determine the optimal neural network structure,
optimiser, layer activation function, and epoch size. Then, the optimal neural network structure
and parameters are determined to construct a GARCH-ANN model for the sliding window method.
Finally, we choose the best training and test sizes. After determining the best performing GARCH
and GARCH-ANN models, the models are compared in several tests performed on the complete
dataset and using the sliding window method. Then, based on the comparisons, we determine which

model is better at predicting volatility.

44 ARMA

For the ARMA model, first, we need to find the optimal orders of p and q for AR(p) and MA(q). To
do that, we perform 25 tests with different sets of p and q. The values considered for p and q are from
1 to 5. Table 22](see Appendix) gives an overview of these tests. Although the autocorrelation and
partial autocorrelation plots indicated that the best model is ARMA(1,1); based on the AIC value,
we observe that ARMA(3,3) is the best one. Nevertheless, neither ARMA(1,1) nor ARMA(3,3)
outperform other ARMA models based on the five metrics described earlier. On the contrary, with
regards to SMAPE, ARMA(4,5) outperforms the others. Although, ARMA(2,1) outperforms the
others in regards to the MAPE metric. In addition, based on the MAE results, ARMA(4,4) is the
best one, while ARMA(3,2) dominates other ARMA models based on the MSE and RMSE metrics.
The best performing models among different metrics and the models stated to be the best performers

by the correlation plots and standard method are displayed in Table[I]
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Table 1. The best performing ARMA models and the models stated to be best

MAE MAPE sMAPE MSE RMSE

0.003876 | 126.187% | 167.512% | 0.00005198 | 0.0072
0.003871 | 124.312% | 168.777% | 0.00005161 | 0.0072
0.003866 | 125.766% | 165.329% | 0.00005112 | 0.0071
0.003879 | 137.051% | 161.123% | 0.00005211 | 0.0072
0.003848 | 128.991% | 162.887% | 0.00005128 | 0.0072
0.003905 | 167.689% | 155.925% | 0.0000549 | 0.0074

ARl W WO~
N || W[ N[ == Qa8

Based on the MAPE metric, ARMA(2,1) outperforms the other models. Therefore, ARMA(2,1)
is chosen for the sliding window method. When considering MAPE, ARMA(2,1) is the most
effective with the sliding window method when the training size is 1000 and the test size is 5 (see
Table [2), where MAPE is 122.683%, and SMAPE is 171.973% respectively. Furthermore, when
the training size is 1000, the MSE values are similar to the MSE of the standard method in Table ([T}
In conclusion, we can say that the method’s predictive performance is more highly based on the

metrics than on the evaluated methods.

Table 2. ARMA(2,1) sliding window results

Training | Test
MAE MAPE sMAPE MSE RMSE

size size
1000 5 10.004323 | 122.683% | 171.973% | 0.000052 | 0.005268
500 5 10.005277 | 132.907% | 170.189% | 0.000077 | 0.006416
365 5 ]0.005718 | 131.661% | 165.430% | 0.000101 | 0.006930
300 5 | 0.005699 | 144.047% | 162.609% | 0.000097 | 0.006887
100 5 10.005774 | 156.280% | 159.968% | 0.000096 | 0.006991
1000 10 | 0.004326 | 119.845% | 172.934% | 0.000052 | 0.005523
500 10 | 0.005292 | 130.805% | 171.219% | 0.000078 | 0.006741
365 10 | 0.005672 | 126.463% | 166.578% | 0.000094 | 0.007195
300 10 | 0.005753 | 145.816% | 164.120% | 0.000099 | 0.007241
100 10 | 0.005817 | 157.229% | 160.082% | 0.000098 | 0.007348

4.5 Machine learning

For different machine learning models, we use identical data sets and features to build a comparison
between them. First, we evaluate the optimal features for each machine learning method and choose

the best set of features. Then, for each method, the models with default parameters and optimised
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parameters are compared. Afterwards, we choose the best set of model parameters to create a

sliding window method. In this study, the best training and test sizes are determined for each model.

4.5.1 Random forest

Random forest’s (RF) first model optimisation involves the testing of the features. Initially, we
test the model with z number of previous returns, where the minimum value of z is one, and the
maximum is thirty. Table 23] (see Appendix) gives an overview of the number of previous returns in
the feature testing. As the number of previous returns as features grow, the MAE, MAPE, MSE
and RMSE decrease in general. On the other hand, as the number of previous returns increase,
the SMAPE value increases. The results for MAE, MAPE, SsMAPE and MSE can be confirmed
visually from figures[3]-[6] An immense difference in MAPE can be seen (see Table[23]in Appendix)
between the results of one previous return and thirty previous returns — 469.225% and 151.448%

respectively.
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The second set of model feature tests also includes the high, low, open and close values and the

z number of previous returns. Table [24] (see Appendix) gives a numerical overview of the results.
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For MAE, MAPE and sMAPE measures, similar results are obtained as seen in figures and E}

However, unlike in the previous set of tests, MSE has a spike between 15 and 25 returns as seen in

figure [10]
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To conclude the feature testing, we can see that the number of previous returns has an extensive
impact on the results. The values for the MAE, MAPE, and MSE metrics decrease substantially
as the number of previous returns grows. On the contrary, the value for SMAPE increases as the
number of previous returns rises. Therefore, if the interest is in the MAE, MAPE or MSE values, it
is more reasonable to choose a high number of previous returns. If the SMAPE is considered more
substantial, it is more feasible to favour a low number of previous returns. Furthermore, if a low
number of previous returns is preferred, it is better to include the extra features. Simultaneously,
if a high number of previous returns is chosen, then the high, low, open and close values do not
appear to be meaningful as the results are similar. For further RF model optimisation and tests,
both options of one previous return and thirty previous returns are studied. In addition, further
optimisation includes the optimising the model’s parameters.

Tables [3| and 4{ show the difference when using default parameters and optimised parameters

for the RF model. With one previous return, there is a big increase in the values of the MAE and
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Table 3. Random forest results with default parameters

Z prev. returns MAE MAPE sMAPE MSE RMSE
1 0.004532 | 340.681% | 142.120% | 0.000053 | 0.0073
30 0.003943 | 151.616% | 162.270% | 0.000049 | 0.0071

Table 4. Random forest results with optimised parameters

Z prev. returns MAE MAPE sMAPE MSE RMSE
1 0.003888 | 114.516% | 170.743% | 0.000054 | 0.0073
30 0.003872 | 109.421% | 182.709% | 0.000051 | 0.0071

MAPE metrics when parameters are optimised, while MSE and RMSE values are fairly similar.
However, we can see that the model’s effectiveness decreased in the SMAPE metrics. With thirty
previous returns, the outcome is similar to one previous return, except that MAE and MAPE do not
shrink as much. In conclusion, the optimisation technique does not favour the sSMAPE metric, but it
is beneficial in terms of the MAE and MAPE metrics.

The sliding window method is performed with two different sets of features — one previous
return, high, low, close, and open values, and thirty previous returns, high, low, close, and open
values. The overview of the results can be seen in tables [5]and [6l. With both sets of features, the
metric value patterns are quite identical. A large training data set is beneficial for the MAE, MAPE,
MSE and RMSE metrics in both cases. Here, we can observe that the values increase as the training
size increases; however, for SMAPE, a small size is favourable.

The results of the sliding window method align with the results of the feature testing and
parameter optimisation testing (see Tables 23| and 24 in Appendix). Thirty previous returns as
features yield better outcomes than one previous return with MAE, MAPE, MSE, RMSE, and one
previous return yields better results with sSMAPE.

4.5.2 Support vector regression

For SVR models, the same set of tests is carried out as for the RF models. Tables [25]and 26| (see
Appendix) give an overview of the results of the feature testing with SVR default parameters. As
seen in figures [I2] [[4]and [I6] and figures 24] and [26] (see Appendix), as the number of previous
returns increases gradually, the metric values increase. Therefore, the optimal number of returns
for SVR with all the features is one; and for the feature set including only the previous returns,
the metric values start out relatively small and then spike between two and five previous returns.

However, after the spike, the errors decrease and are somewhat stable until thirty previous returns.
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Table 5. Random forest sliding window results with 1 previous return, high, low, close and open

values as features

Table 6. Random forest sliding window results with 30 previous returns, high, low, close and open

Training | Test| A | MAPE | sMAPE | MSE RMSE
S1Ze S1Z¢

1000 | 5 |0.0042292 | 136.707% | 158.989% | 0.0000503 | 0.0054251
500 | 5 |0.0051478 | 171.140% | 147.707% | 0.0000797 | 0.0063650
365 | 5 | 00056279 | 183.895% | 143.967% | 0.0001036 | 0.0069238
300 | 5 |0.0056305 | 195.862% | 141.303% | 0.0001015 | 0.0069124
100 | 5 |0.0057843 | 229.950% | 136.660% | 0.0001015 | 0.0070492
1000 | 10 | 0.0042292 | 136.708% | 158.990% | 0.0000503 | 0.0054251
500 | 10 | 0.0052239 | 177.779% | 147.516% | 0.0000816 | 0.0067373
365 | 10 | 0.0056816 | 195.423% | 144.304% | 0.0000995 | 0.0072991
300 | 10 | 0.0057086 | 195.899% | 140.693% | 0.0001041 | 0.0073129
100 | 10 | 0.0058286 | 228.130% | 136.958% | 0.0001032 | 0.0074374

values as features

Training | Test
} . MAE MAPE sMAPE MSE RMSE

size size
1000 5 10.004331981 | 136.487% | 165.986% | 0.0000526 | 0.0052887
500 5 ] 0.005235231 | 160.208% | 160.844% | 0.0000773 | 0.0064205
365 5 | 0.005786871 | 172.378% | 158.141% | 0.0000994 | 0.0070673
300 5 | 0.005771790 | 182.862% | 155.889% | 0.0000980 | 0.0070461
100 5 | 0.005938070 | 209.415% | 150.579% | 0.0000992 | 0.0072083
1000 10 | 0.004367577 | 137.181% | 165.987% | 0.0000543 | 0.0055787
500 10 | 0.005272594 | 162.311% | 161.058% | 0.0000789 | 0.0067350
365 10 | 0.005809639 | 167.753% | 158.240% | 0.0000989 | 0.0074285
300 10 | 0.005823662 | 185.551% | 156.302% | 0.0000996 | 0.0073638
100 10 | 0.005968445 | 208.415% | 150.319% | 0.0001008 | 0.0075318

In contrast to the RF models, using high, low, open, and close features does not yield better
results than without them. Also, we can see that the SMAPE value is positively correlated with other

metrics, unlike the RF model, where the SMAPE metric is negatively correlated with other metrics.
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According to the SVR feature testing, the optimal number of previous returns is one. Two sets
of cases are compared, as was done with the RF model. As seen in tables[7and [§] the optimised
parameters greatly improve the MAE, MAPE, MSE and RMSE metrics. We can also observe a large
improvement with thirty previous returns. In this case, the MAPE value decreased from 866.428%
to 105.440%. Moreover, with one previous return, the value of MAPE demonstrates an almost two

times decrease. With optimised parameters, the SVR model is more effective with thirty previous
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returns based on the MAE, MAPE, MSE and RMSE values. However, as in the RF model, the
SVR’s sSMAPE largely increases with the optimised variation of the model. Therefore, we can see

that the parameter optimisation offers improvements over the default parameters. Besides, it is

reasonable to test the sliding window method with both sets of parameters.

Table 7. SVR results with default parameters

z prev. returns MAE MAPE sMAPE MSE RMSE
1 0.0071281 | 226.278% | 149.743% | 0.0001659 | 0.0129
30 0.0123163 | 866.428% | 143.149% | 0.0002717 | 0.0165
Table 8. SVR results with optimised parameters
Z prev. returns MAE MAPE sMAPE MSE RMSE
1 0.006642 | 112.357% | 172.399% | 0.000156 | 0.0125
30 0.006687 | 105.440% | 185.201% | 0.000157 | 0.0125

The sliding window method is implemented with two sets of features for SVR: one and thirty
previous returns. Unlike RF, the high, low, open and close values are not used for the SVR model

with the sliding window implementation.

The results of the sliding window implementation with one previous return as features can be
seen in Table[9] We can see that the results are mainly of the same order of magnitude. For example,
the difference between the maximum value and minimum value of SMAPE is 6%. The only outlier
in the results is the test with a training size of 100 and test size of 10, where the MAPE, MSE
and RMSE are vastly different from other tests. However, the SVR model is more effective with a

smaller test size of 5 than with a higher test size of 10.

The overview of the SVR model with sliding window implementation and thirty previous returns
is presented in Table We can see that the results between one and thirty previous returns do
not differ much, and the same metric growth and decay patterns are also observed. For example,
the MAE grows as the training size decreases. A training size of 365 also yields the best results in
regards to MAPE. Additionally, sMAPE is the lowest with a training size of 365, with the result of
a training size of 300 being a close second. Here, we can observe that the optimal training and test
size depends heavily on the favoured metric. However, a training size of 365 with a test size of 5 is

the most optimal due to its results across various metrics.
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Table 9. SVR sliding window results with 1 previous return

Training | Test
. . MAE MAPE sMAPE MSE RMSE

size size
1000 5 | 0.001809 | 134.904% | 66.605% | 0.000013 | 0.002295
500 S |0.001813 | 127.716% | 62.403% | 0.000013 | 0.002309
365 5 10.001887 | 121.033% | 61.806% | 0.000015 | 0.002398
300 5 |0.001897 | 126.677% | 61.290% | 0.000015 | 0.002402
100 5 10.002062 | 140.286% | 63.849% | 0.000017 | 0.002566
1000 10 | 0.001813 | 133.369% | 67.359% | 0.000013 | 0.002459
500 10 | 0.001878 | 132.227% | 62.436% | 0.000015 | 0.002539
365 10 | 0.001921 | 123.939% | 62.683% | 0.000014 | 0.002555
300 10 | 0.002064 | 141.501% | 62.529% | 0.000020 | 0.002738
100 10 | 0.002505 | 220.737% | 64.919% | 0.000095 | 0.003334

Table 10. SVR sliding window results with 30 previous return

Traming | Test |\ F | MAPE | sMAPE | MSE | RMSE
S17€ S17¢€

1000 | 5 |0.001824 | 133.317% | 66.993% | 0.000013 | 0.002321
500 | 5 | 0.001839 | 127.577% | 63.749% | 0.000013 | 0.002324
365 | 5 | 0.001865 | 123.760% | 61.886% | 0.000013 | 0.002367
300 | 5 |0.001894 | 127.980% | 62.082% | 0.000014 | 0.002389
100 | 5 |0.002279 | 140.768% | 63.960% | 0.000059 | 0.002816
1000 | 10 | 0.001817 | 128.120% | 66.935% | 0.000013 | 0.002472
500 | 10 | 0.001853 | 127.928% | 63.806% | 0.000013 | 0.002492
365 | 10 | 0.001924 | 127.943% | 63.265% | 0.000013 | 0.002568
300 | 10 | 0.002000 | 129.264% | 63.327% | 0.000016 | 0.002663
100 | 10 | 0.002344 | 146.169% | 65.194% | 0.000032 | 0.003071

4.5.3 K-nearest neighbours

For KNN, the feature testing overview results are presented in tables [27] and 28] (see Appendix).
When the feature set includes only the z number of previous returns, the MAPE, MAE, and MSE
values vary moderately in terms of magnitude. At the same time, the SMAPE magnitude is relatively

stable. We can see that no correlation is observed between the number of returns and the results as
seen in figures[I7] [19and 21 and figures [27] and 29] (see Appendix).
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When the feature set additionally includes high, low, open and close values, the results are
relatively stable (See figures 18] [20]and [22] and figures [28]and [30]in Appendix). However, as the
number of previous returns increases, generally, the error metrics also increase. From the results,
we can see that the most optimal number of previous returns is 1.

In general, including all the features yields better results in almost all the metrics, except the
MAPE. However, the test results, including all the features, are relatively stable. Based on that,

we can conclude that all the observed features should be included in the further tests for the KNN
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model due to the better results.

Parameter optimisation is carried out with z previous returns, high, low, open and close values
as features. However, the optimal number of z previous returns is one, according to the feature
testing results where z = 1 and z = 30 for comparison with other machine learning models. Based
on the parameter optimisation, the optimal k for KNN is three. As seen in Table|l1|and Table
[12] for a set of features where z = 1, only the MAPE metric is moderately improved with the
optimisation — from 138% to 129%. The MSE and RMSE values also decrease by a meagre margin,
and MAE and MAPE values increase. We can also see that for a set of features where z = 30, the
model improves only regarding SMAPE, and that the values for the other metrics increase with the

optimised parameters.

Table 11. KNN results with default parameters

Z prev. returns MAE MAPE sMAPE MSE RMSE
1 0.0043319 | 377.420% | 138.089% | 0.0000449 | 0.0067
30 0.0043565 | 379.253% | 138.437% | 0.0000452 | 0.0067
Table 12. KNN results with optimised parameters
Z prev. returns MAE MAPE sMAPE MSE RMSE
1 0.004337 | 406.823% | 129.109% | 0.000044 | 0.0066
30 0.004514 | 420.124% | 129.911% | 0.000047 | 0.0069

Based on the findings, we can observe that the optimised KNN model is improved only regarding
sMAPE and deteriorates with regards to the other metrics. Moreover, the optimisation is not as
successful for the KNN model as it is with RF and SVR.

The sliding window method is performed with two sets of features: one previous return and
thirty previous returns. In both sets high, low, open and close values are also included as features.
The results for the two sets are almost equal as seen in tables|13|and However, the second set,
where z = 30, has slightly better results. Overall, a higher training size is more favourable for the
KNN model. The metrics generally increase as the training size decreases. We can see that the test
size has a minor impact on the results, as all the metrics except MAPE are greater (with a test size
of 10), although the difference is minor. In conclusion, the KNN performs better with z = 30 and a

more extensive training size and a smaller test size of 5.
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Table 13. KNN sliding window results with 1 previous return

Traiming | Test| 0k | MAPE | sMAPE | MSE | RMSE
S1zZ¢€ S1Z¢€

1000 | 5 |0.003074 | 201.410% | 100.715% | 0.000031 | 0.003796
500 | 5 | 0.004186 | 237.488% | 106.728% | 0.000062 | 0.005206
365 | 5 | 0.004818 | 237.170% | 109.437% | 0.000090 | 0.005949
300 | 5 | 0.004857 | 235.477% | 109.942% | 0.000087 | 0.005994
100 | 5 |0.005236 | 254.503% | 115.289% | 0.000095 | 0.006391
1000 | 10 | 0.003126 | 207.538% | 101.042% | 0.000032 | 0.004066
500 | 10 | 0.004409 | 250.347% | 108.955% | 0.000069 | 0.005701
365 | 10 | 0.004946 | 240.381% | 111.768% | 0.000086 | 0.006381
300 | 10 | 0.005101 | 241.137% | 112.827% | 0.000094 | 0.006530
100 | 10 | 0.005432 | 252.849% | 117.991% | 0.000099 | 0.006909

Table 14. KNN sliding window results with 30 previous return

Training | Test |\ sg | MAPE | sMAPE | MSE | RMSE
NVAS S1Z¢

1000 | 5 |0.003058 | 198.870% | 100.521% | 0.000031 | 0.003791
500 | 5 | 0.004060 | 235.659% | 107.105% | 0.000057 | 0.005035
365 | 5 | 0.004800 | 229.944% | 109.217% | 0.000088 | 0.005906
300 | 5 |0.004873 | 229.376% | 110.175% | 0.000087 | 0.005976
100 | 5 |0.005309 | 251.451% | 115.660% | 0.000096 | 0.006441
1000 | 10 | 0.003116 | 196.041% | 101.485% | 0.000033 | 0.004042
500 | 10 | 0.004283 | 242.706% | 108.508% | 0.000064 | 0.005539
365 | 10 | 0.004997 | 246.391% | 111.847% | 0.000089 | 0.006404
300 | 10 | 0.005055 | 228.944% | 112.435% | 0.000091 | 0.006496
100 | 10 | 0.005499 | 250.767% | 118.310% | 0.000098 | 0.006990

4.6 ARMA and machine learning comparison

In this section, we compare the ARMA model results with those of the machine learning models in
two different ways. The first method is based on taking the complete training and testing on the
whole data set. The second is the sliding window method. The ARMA(2,1) model is chosen for
both comparisons.

The best performing models are also chosen among the machine learning models. First, we

choose the standard method’s best-performing machine learning model to compare with the ARMA
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model. Here, it is important to note that each machine learning model excels with specific metrics.
For example, the RF has the lowest MAE. SVR has the lowest MAPE, but the RF model’s MAPE
has close results — 105.440% and 109.421%, respectively (see Table[I5|below). On the other hand,
KNN has the lowest sMAPE, MSE and RMSE values. Generally, the optimal machine learning
model to be compared to ARMA depends heavily on the favoured metric. However, to give a
complete overview of all the metrics, each metric’s best performing models should be compared
with the respective ARMA metric value.

The comparison of the models is displayed in Table [I5] The best result of each metric is
coloured grey. As we can see, each model excels in a specific metric. For example, the ARMA(2,1)
model outperforms the machine learning models in MAE, with the RF being a close second. While
the SVR model and RF model (following closely) are the most optimal if MAPE is the favoured
metric and KNN is the best model to achieve the lowest SMAPE. At the same time, RF exceeds
others in regards to MSE and RMSE. Based on these numbers, we can conclude that there isn’t a
single model that outperforms others in all metrics. On the contrary, the appropriate model should
be chosen according to the most favoured metric. Nevertheless, if one should choose to have an
all-round model, the RF would have better results in all metrics, except SMAPE, where the KNN
model excels.

Table 15. Best performing ARMA and Machine learning model comparison, standard method

Model / Metric | MAE MAPE sMAPE MSE RMSE
ARMA(2,1) | 0.003871 | 124.312% | 168.777% | 0.0000516 | 0.0072
RF 0.003872 | 109.421% | 182.709% | 0.00005055 | 0.0071

SVR 0.006687 | 105.440% | 185.201% | 0.000157 | 0.0125
KNN 0.004514 | 420.124% | 129.911% | 0.000047 | 0.0069

Second, the best performing models of machine learning and ARMA are compared in the
sliding window method. For the comparison, only the training and test sizes which yielded the best
results in the previous sections are chosen. The following three settings of training/testing sizes are

considered:
e training size = 1000 & test size = 5;
* training size = 365 & test size = 5;
e training size = 1000 & test size = 10.

The overview of the results is given in Table [I6] where the lowest value of each metric is
highlighted in grey. Overall, the best performing model in the sliding window method is the SVR
model, which has the lowest value in at least a total of 4 metrics — MAE, sMAPE, MSE and RMSE.
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Table 16. ARMA and machine learning results from the sliding window method

Training | Test
fatmng | 2SSt MAE | MAPE | SMAPE | MSE | RMSE

size size

ARMA(2,1) 1000 5 10.004324 | 122.68 | 171.97 | 0.000052 | 0.005269

RF 1000 | 5 |0.004332 | 136.487 | 165.986 | 0.000053 | 0.005289
SVR 1000 | 5 |0.001824 | 133317 | 66.993 | 0.000013 | 0.002321
KNN 1000 | 5 |0.003058 | 198.870 | 100.521 | 0.000031 | 0.003791
ARMAQ2,1) | 365 5 [0.005718 [ 131.66 | 165.43 [ 0.000102 | 0.006931
RF 365 5 | 0.005787 | 172.378 | 158.141 | 0.000099 | 0.007067
SVR 365 5 1 0.001865 | 123.760 | 61.886 | 0.000013 | 0.002367
KNN 365 5 | 0.004800 | 229.944 | 109.217 | 0.000088 | 0.005906
ARMAQ,1) | 1000 | 10 [ 0.004327 | 119.84 | 172.93 | 0.000052 | 0.005524
RF 1000 | 10 | 0.004368 | 137.181 | 165.987 | 0.000054 | 0.005579
SVR 1000 | 10 | 0.001817 | 128.120 | 66.935 | 0.000013 | 0.002472
KNN 1000 | 10 | 0.003116 | 196.041 | 101.485 | 0.000033 | 0.004042

When using a smaller training size, SVR outperformed the other models based on all 5 metrics.
In terms of SMAPE, the SVR model outperforms the other models by at least 33%. Regarding
MSE, the difference is more than two times bigger. It seems that the ARMA model performs better
according to the MAPE metric when the training set size is larger, while RF and KNN are relatively
worse. In those cases, however, the MAPE of SVR method is not far off from that of ARMA. We
can also observe that KNN provides the second best results, outperforming the ARMA model in all
settings based on 4 metrics.

In conclusion, we can see that the machine learning models, in particular SVR and KNN, exceed
the ARMA model in almost all of the metrics. Therefore, machine learning has great potential in
predicting the OMX Baltic Benchmark returns when compared to the ARMA approach.

4.7 GARCH

Using a similar approach as for the ARMA model in Section 5.3, we consider different p and q
values (from one to five for each setting, resulting in 25 different cases) and use the sliding window
method.

Table 29| (see Appendix) gives an overview of the metrics of errors based on the GARCH models
with different p and q values. The table consists of 25 models, where p and q have a minimum value
of one and a maximum value of five. Overall, the GARCH(1,1) outperformed the other variations
of the model. This finding is partially in line with Hansen and Lunde (2005), where the authors
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found that GARCH(1,1) outperformed the GARCH model with p and q up to 2 lags. The only
metrics where GARCH(1,1) did not outperform others are in MSE and RMSE, where GARCH(2,1)
excels. Overall, the results vary when the orders of p and q are changed, although the MAPE, MAE,
MSE, RMSE metrics fluctuate considerably more than the SMAPE metric. As the best model,
GARCH(1,1) 1s used for the analysis with the sliding window method.

The sliding window method with the GARCH(1,1) model is executed with training sizes of
1000, 500, 365, 300, 100, and test sizes of 5 and 10 — a total of 10 tests. Table|1/| gives an overview
of the GARCH(1,1) sliding window results. The MAE values are the lowest when the training size
is 1000, as modifying the test size did not impact the results a lot. The MSE and RMSE values also
have the lowest values with a higher training size. MAPE is at its lowest with a smaller training
size. At the same time, the SMAPE values vary between 60% and 67%. The difference between the
lowest and highest SMAPE values does not exceed 8%. However, the best setting for SsSMAPE is
a training size of 100 and a test size of 5, which shows that the recent history has more impact in
regards to MAPE, and long history is important for MAE, sMAPE, MSE and RMSE.

Table 17. GARCH(1,1) sliding window results

Traiing | Test |\ | MAPE | SMAPE | MSE | RMSE
S17¢€ S17¢€
1000 | 5 |3.36E-06 | 108.772 | 62.30179 | 2.04E-11 | 4.11E-06
500 5.57E-06 | 120.217 | 60.15201 | 4.00E-10 | 6.31E-06

5

365 S | 4.779E-06 | 115.560 | 59.88104 | 3.16E-10 | 5.42E-06
5
5

300 4.47E-06 | 110.575 | 60.89112 | 2.90E-10 | 5.10E-06
100 4.45E-06 | 97.607 | 66.09664 | 7.35E-10 | 6.00E-06
1000 10 | 3.53E-06 | 115.261 | 62.48914 | 2.32E-11 | 4.73E-06
500 10 | 6.17E-06 | 122.235 | 60.35259 | 8.60E-10 | 8.47E-06
365 10 | 4.79E-06 | 115.853 | 59.74211 | 3.14E-10 | 5.57E-06
300 10 | 4.49E-06 | 112.073 | 61.954 2.87E-10 | 5.65E-06
100 10 | 4.48E-06 | 95.786 | 66.95244 | 8.34E-10 | 7.34E-06

To sum up, in the GARCH case, a higher training size is more favourable for MAE, MSE and
RMSE, and a smaller training size is more favourable for MAPE. For sMAPE, however, the optimal
training size is 365. Also, it is important to note that the test size did not have a large impact on the

results.
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4.8 GARCH-ANN

For the GARCH-ANN model, we create various structures of the ANN model for evaluation. Six
different structures, which vary in terms of the number of layers used and the dimensionality of
the layer’s output space, are represented in Table [I8] It is important to note that here, the default
optimiser RMSprop '? is used, and no layer activation functions are used in the structure testing.

Table 18. GARCH-ANN structure testing

Structure MAE MAPE | sMAPE MSE RMSE
Structure 1 | 3.06E-06 | 58.258 | 66.791 | 2.87E-10 | 1.70E-05
Structure 2 | 3.56E-06 | 182.221 | 79.050 | 2.80E-10 | 1.67E-05
Structure 3 | 2.98E-06 | 63.332 | 61.652 | 2.86E-10 | 1.69E-05
Structure 4 | 3.13E-06 | 57.502 | 71.571 | 2.88E-10 | 1.70E-05
Structure 5 | 3.05E-06 | 58.574 | 65.960 | 2.87E-10 | 1.70E-05
Structure 6 | 3.02E-06 | 59.805 | 64.124 | 2.87E-10 | 1.69E-05

From Table |18] we can see that most of the structures perform similarly across various metrics.
The only exception is Structure 2, which has a higher MAPE and a slightly higher sMAPE. At
the same time, Structure 3 and Structure 2 are almost identical, apart from the dropout layer
demonstrated by Structure 3. The high error is most likely avoided in the Structure 3 predictions
due to the dropout layer. However, Structures 1, 4, 5 and 6 (in addition to Structure 2) do not have
a dropout layer, and the results do not show a large rise in errors. On the contrary, the MAPE is
lower without a dropout layer, but the SMAPE is slightly higher without the dropout layer than with.
Adding more layers and increasing the dimensionality of the layer output does not impact the results
a lot. Structure 6 has more layers than others, and the first layers also have higher dimensionality,
but the results are still similar. Structure 6 is used to test the optimisers and layer activation functions
due to the most outstanding results.

Tables (see Appendix) give an overview of the cross-validation tests of the optimisers and
the layer activation functions. We can see that cross-testing does not yield better results and that
only a few combinations have considerably higher errors. For example, using the ftrl optimiser led
to much larger errors in some cases.

Overall, the sigmoid-adam combination has the best balance between MAPE and sSsMAPE. Even
though many combinations yield better MAPE or SsMAPE, the other metrics have higher errors.
Structure 6 with the sigmoid activation function and adam optimiser is used with the sliding window
method. An overview of the GARCH-ANN sliding window method results is given in Table [I9]
The results indicate that a smaller test size of 5 is in general more effective than having a test size

Phttps://www.tensorflow.org/apigocs /python /t f | keras/Model, retrievedon25.04.2021
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Table 19. GARCH-ANN sliding window method

Training size | Test size | MAE MAPE | sMAPE MSE RMSE
1000 5 2.64E-06 | 119.504 | 60.498 | 1.75E-10 | 3.76E-06
500 5 4.04E-06 | 101.804 | 55.645 | 2.47E-10 | 5.75E-06
365 5 5.02E-06 | 101.118 | 56.113 | 3.61E-10 | 6.98E-06
300 5 4.99E-06 | 98.454 | 56.751 | 3.50E-10 | 6.94E-06
100 5 5.07E-06 | 90.926 | 56.220 | 3.47E-10 | 7.01E-06
1000 10 1.24E-05 | 1074.851 | 144.060 | 4.08E-10 | 1.36E-05
500 10 1.30E-05 | 714.963 | 137.284 | 4.34E-10 | 1.47E-05
365 10 5.10E-06 | 95.357 | 56.486 | 3.63E-10 | 7.78E-06
300 10 5.22E-06 | 116.604 | 58.011 | 3.84E-10 | 8.06E-06
100 10 5.40E-06 | 105.967 | 59.054 | 3.78E-10 | 8.27E-06

of 10. When the test size is 5, a smaller training size yields better results for MAPE and SsMAPE
metrics than a larger training size. For example, with a training size of 1000, the MAPE is almost
30% higher than with a training size of 100. However, the MAE, MSE and RMSE metrics indicate
that a higher training size is more beneficial than a smaller one. The values for MAE, MSE and
RMSE’s are almost double between the tests with a training size of 1000 and a training size of 100.

In summary, it should be noted that if minimising MAPE or sMAPE is the main priority, then
a smaller training size should be used. However, if the MAE, MSE or RMSE metrics is the main
priority, then a larger training size is preferred. In any case, a smaller test size should be chosen for

better effectiveness.

4.9 GARCH and GARCH-ANN comparison

We compare GARCH and GARCH-ANN models using two methods: the standard method and the
sliding window method. GARCH(1,1) is the best performing model among the GARCH models and
the best performing GARCH-ANN model consists of the GARCH(1,1) model, the sigmoid layer
activation function and adam algorithm as the optimiser. The corresponding results for the standard
method presented in tables [29] and [31]in the Appendix conclude that GARCH(1,1) outperforms
the GARCH-ANN model for sMAPE, MSE and RMSE metrics, but the GARCH-ANN model had
lower MAE and MAPE.

The sliding window results displayed in Tables[I7]and [I9]show that whether the GARCH-ANN
model or the GARCH model gives better predictions depends on the training and testing size,
and the metric. For example, according to the sMAPE metric, GARCH-ANN outperformed the
GARCH model when the test size is 5, but not when it is 10. When looking at MAPE, GARCH did
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a better prediction in 4 out of 5 cases when the test size is 10. Similarly, according to the MAE and
RMSE metrics, GARCH gave better predictions when test size is 10, but we cannot make a similar
conclusion when thetest size is 5.

In conclusion, it is not possible to give a clear answer if GARCH or GARCH-ANN makes
a better prediction, when using the sliding window method. However, if we follow the standard
method of using the whole dataset to train and test, then the GARCH model is more effective
when the favoured evaluation metric is SMAPE, MSE or RMSE. If MAE or MAPE is the preferred
evaluation metric, then the GARCH-ANN model would be more effective.

4.10 Standardised residuals

The histograms of the standardised residuals for the standard method are displayed in figure 31]
(see Appendix). The histograms show that the econometric models have most of the standardised
residuals between zero and one (almost 300). At the same time, machine learning models have
a lower number of standardised residuals between zero and one. Overall, the machine learning
models have substantially higher standardised residuals than that of the econometric models. Also,
as seen in figure 31| (see Appendix), there are almost no standardised residuals above seven for the
econometric models, but there are many higher standardised residual values for the machine learning
models; for example, the SVR model has the highest amount. Table 20| displays the mean absolute
standardised residuals for all methods, where we can see that the econometric approach has the
lowest mean — 1.8633, while the SVR approach has the highest mean of the absolute standardised
residuals of 5.4157.

Table 20. Mean absolute standardised residuals with the sliding window method

Method Mean absolute standardised residuals
Econometric 1.8633
Random forest 3.2216
SVR 5.4157
KNN 3.5365

Figure [32] (see Appendix) displays the histograms of the standardised residuals with the sliding
window method. Compared to the standard method, the econometrics models have more stan-
dardised residuals in the higher range of values. In contrast to the standard method, the SVR and
KNN models have substantially better results. Moreover, the SVR approach has a low number of
high values of standardised residuals, as seen in figure [32](see Appendix), while the standardised
residuals of the RF do not improve a lot.

Table [21] shows the mean absolute standardised residuals using the sliding window method.
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Using the sliding window method, the SVR approach has the best result with a mean of 1.2236.
Simultaneously, the RF method has the highest mean, and the econometric models have a mean of
2.6327, which is higher than the standard method.

Table 21. Sliding window method mean absolute standardised residuals

Method Mean absolute standardised residuals
Econometric 2.6327
Random forest 2.8816
SVR 1.2236
KNN 2.0968

In conclusion, we can say that the machine learning models do better with the sliding window
method while the econometric models do worse. Overall, the SVR model with the sliding window

method has the lowest standardised residuals.

5 Conclusion

Predicting stock returns and volatilities with higher accuracy is one of the most interesting topics in
stock market analysis. That is why the challenge of finding a suitable prediction method is tempting.
From the previous works, we can see that both econometric and machine learning methods could
be used for prediction purposes. However, in this paper, we found that the choice of a suitable
methodology depends heavily on the preferred evaluation technique and the size of the dataset. This
paper contributes to the literature by providing a detailed analysis of using different econometric
and machine learning techniques based on the example of the NASDAQ Baltic Stock Exchange.
The results of our analysis demonstrate that the machine learning models we consider generally
outperform the ARMA approach for different training and testing sample sizes and metrics. In
particular, we can say that the support vector regression (SVR) and k-nearest neighbours (KNN)
provide better predictions in most of the cases we considered, while the performances of the
random forest (RF) and artificial neural network GARCH (GARCH-ANN) versus the corresponding
econometric models (ARMA and GARCH, respectively) depended on the training and testing
sample sizes and the metric. These results are similar to that of Ballings et al. (2015), where RF and
SVR models demonstrated the most accurate results among the machine learning algorithms for
predicting the stock prices of European firms. Our results using GARCH and GARCH-ANN is in
line with the work of Shaik and Sejpal (2020), who found no clear evidence on which model is better
for India’s three stock market indices. However, the comparison of GARCH and GARCH-ANN may
yield different results depending on the data at hand. Siddiqui et al. (2018)) showed that GARCH
outperforms GARCH-ANN for net asset values prediction, while Kristjanpoller and Minutolo
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(2015)) found that the GARCH-ANN model improved the mean average percentage error by 25%
when predicting gold price volatility. Based on previous works and our analysis, this paper suggests
that when choosing an appropriate machine learning model, one should also pay attention to the
metric that evaluates the prediction errors, and at the same time the training and testing sample
sizes.

There are several ways to expand on the topic. For example, the dataset could be modified via
filtering the outliers to minimise their impact on the dataset and later researching the prediction if
the time series is not as volatile. Additionally, other machine learning models, financial models and
hybrid models could be implemented, and other features could also be introduced, such as technical
indicators and financial statements. Moreover, sentiment analysis could also be used to determine
the public’s opinion about specific stocks or the market overall, and the sentiment scores can be

used as predictive features.



Predicting stock return and volatility 35

References

Armstrong, J. S. (1985). Long-range forecasting: From crystal ball to computer. John-Wiley and
Sons, New York, 348.

Awad, M., & Khanna, R. Support vector regression. In: Efficient learning machines. Springer, 2015,
pp. 67-80.

Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for
stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056.

Ban, T., Zhang, R., Pang, S., Sarrafzadeh, A., & Inoue, D. Referential knn regression for financial
time series forecasting. In: International conference on neural information processing.
Springer. 2013, 601-608.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econo-
metrics, 31(3), 307-327.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Chai, T., & Draxler, R. R. (2014). Root mean square error (rmse) or mean absolute error (mae)?—
arguments against avoiding rmse in the literature. Geoscientific model development, 7(3),
1247-1250.

Chen, K., Zhou, Y., & Dai, F. A Istm-based method for stock returns prediction: A case study of
china stock market. In: 2015 ieee international conference on big data (big data). IEEE.
2015, 2823-2824.

Choudhry, R., & Garg, K. (2008). A hybrid machine learning system for stock market forecasting.
World Academy of Science, Engineering and Technology, 39(3), 315-318.

Daly, K. (2008). Financial volatility: Issues and measuring techniques. Physica A: statistical
mechanics and its applications, 387(11), 2377-2393.

Dash, R., & Dash, P. K. (2016). A hybrid stock trading framework integrating technical analysis
with machine learning techniques. The Journal of Finance and Data Science, 2(1), 42-57.

Ercan, H. Baltic stock market prediction by using narx. In: 2017 12th international scientific and
technical conference on computer sciences and information technologies (csit). 1. IEEE.
2017, 464-467.

Everitt, B. S., & Skrondal, A. (n.d.). The cambridge dictionary of statistics. Cambridge, UK:
Cambridge University Press.

Garcia-Laencina, P. J., Sancho-Gémez, J.-L., Figueiras-Vidal, A. R., & Verleysen, M. (2009). K
nearest neighbours with mutual information for simultaneous classification and missing data
imputation. Neurocomputing, 72(7-9), 1483—-1493.

Grigoryan, H. et al. (2015). Stock market prediction using artificial neural networks. case study of
tallt, nasdaq omx baltic stock. Database Systems Journal, 6(2), 14-23.



36 Nou, Lapitskaya, Eratalay, Sharma

Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. Knn model-based approach in classification. In:
Otm confederated international conferences" on the move to meaningful internet systems".
Springer. 2003, 986-996.

Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat
a garch (1, 1)? Journal of applied econometrics, 20(7), 873—-889.

Herwartz, H. (2017). Stock return prediction under garch — an empirical assessment. International
Journal of Forecasting, 33(3), 569-580. https://doi.org/https://doi.org/10.1016/].1jforecast,
2017.01.002

Hu, Y., Tao, Z., Xing, D., Pan, Z., Zhao, J., & Chen, X. (2020). Research on stock returns forecast of
the four major banks based on ARMA and GARCH model. Journal of Physics: Conference
Series, 1616, 012075. https://doi.org/10.1088/1742-6596/1616/1/012075

Huang, W., Nakamori, Y., & Wang, S.-Y. (2005). Forecasting stock market movement direction
with support vector machine. Computers & operations research, 32(10), 2513-2522.

Jang, H., & Lee, J. (2017). An empirical study on modeling and prediction of bitcoin prices with
bayesian neural networks based on blockchain information. leee Access, 6, 5427-5437.

Kara, Y., Boyacioglu, M. A., & Baykan, O. K. (2011). Predicting direction of stock price index
movement using artificial neural networks and support vector machines: The sample of the
istanbul stock exchange. Expert systems with Applications, 38(5), 5311-5319.

Khaidem, L., Saha, S., & Dey, S. R. (2016). Predicting the direction of stock market prices using
random forest. arXiv preprint arXiv:1605.00003.

Khan, W., Ghazanfar, M. a., Azam, M. A., Karami, A., Alyoubi, K., & Alfakeeh, A. (2020). Stock
market prediction using machine learning classifiers and social media, news. Journal of
Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-
01839-w

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand
forecasts. International Journal of Forecasting, 32(3), 669—-679.

Kim, Y., & Enke, D. (2016). Using neural networks to forecast volatility for an asset allocation
strategy based on the target volatility, procedia computer science. Procedia Computer
Science, 95, 281-286.

Kristjanpoller, W., & Minutolo, M. C. (2015). Gold price volatility: A forecasting approach using the
artificial neural network—garch model. Expert systems with applications, 42(20), 7245-7251.

Lapitskaya, D., Eratalay, H., & Sharma, R. (2021). Predicting stock returns: Armax vs. machine
learning. Advances in Econometrics, Operational Research, Data Science and Actuarial
Studies - Techniques and Theories.

Lebedeva, E. (2018). Spillovers between cryptocurrencies. network map of cryptocurrencies (Doc-

toral dissertation). Master’s Thesis, University of Tartu, Tartu, Estonia.


https://doi.org/https://doi.org/10.1016/j.ijforecast.2017.01.002
https://doi.org/https://doi.org/10.1016/j.ijforecast.2017.01.002
https://doi.org/10.1088/1742-6596/1616/1/012075
https://doi.org/10.1007/s12652-020-01839-w
https://doi.org/10.1007/s12652-020-01839-w

Predicting stock return and volatility 37

Li, M., Yang, C., Zhang, J., Puthal, D., Luo, Y., & Li, J. Stock market analysis using social networks.
In: Proceedings of the australasian computer science week multiconference. New York, NY,
USA: Association for Computing Machinery, 2018. ISBN: 9781450354363.

Liu, W. K., & So, M. K. P. (2020). A garch model with artificial neural networks. Information,
11(10). https://www.mdpi.com/2078-2489/11/10/489

Long, W., Lu, Z., & Cui, L. (2019). Deep learning-based feature engineering for stock price
movement prediction. Knowledge-Based Systems, 164, 163—173.

Nakajima, J. (2017). Bayesian analysis of multivariate stochastic volatility with skew return distri-
bution. Econometric Reviews, 36(5), 546-562.

Nelson, D. M., Pereira, A. C., & de Oliveira, R. A. Stock market’s price movement prediction with
Istm neural networks. In: 2017 international joint conference on neural networks (ijcnn).
IEEE. 2017, 1419-1426.

Nikkinen, J., Piljak, V., & Aijo, J. (2012). Baltic stock markets and the financial crisis of 2008—20009.
Research in International Business and Finance, 26(3), 398—4009.

Noble, W. S. (2006). What is a support vector machine? Nature biotechnology, 24(12), 1565-1567.

Oberholzer, N., & Venter, P. (2015). Univariate garch models applied to the jse/ftse stock indices.
Procedia Economics and Finance, 24, 491-500.

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock market index using fusion of
machine learning techniques. Expert Systems with Applications, 42(4), 2162-2172.

Rossi, A. G. (2018). Predicting stock market returns with machine learning. Georgetown University.

Rounaghi, M. M., & Zadeh, F. N. (2016). Investigation of market efficiency and financial stability
between s&p 500 and london stock exchange: Monthly and yearly forecasting of time series
stock returns using arma model. Physica A: Statistical Mechanics and its Applications, 456,
10-21.

Shah, V. H. (2007). Machine learning techniques for stock prediction. Foundations of Machine
Learning | Spring, 1(1), 6-12.

Shaik, M., & Sejpal, A. (2020). Comparison of garch and ann model for forecasting volatility:
Evidence based on indian stock markets. Journal of Prediction Markets, 14(2).

Siddiqui, M. U., Abbas, A., AbdurRehman, S. M., Jawed, A., & Rafi, M. Comparison of garch model
and artificial neural network for mutual fund’s growth prediction. In: 2018 international
conference on computing, mathematics and engineering technologies (icomet). IEEE. 2018,
1-7.

Suimets, A. (2020, September). Kas praegu on dige aeg investeerida tallinna borsile? Retrieved
March 3, 2021, from https://kukkur.swedbank.ee/investeerimine/kas-praegu-on-oige-aeg-
investeerida-tallinna-borsile

Ticknor, J. L. (2013). A bayesian regularized artificial neural network for stock market forecasting.
Expert Systems with Applications, 40(14), 5501-5506.


https://www.mdpi.com/2078-2489/11/10/489
https://kukkur.swedbank.ee/investeerimine/kas-praegu-on-oige-aeg-investeerida-tallinna-borsile
https://kukkur.swedbank.ee/investeerimine/kas-praegu-on-oige-aeg-investeerida-tallinna-borsile

38 Nou, Lapitskaya, Eratalay, Sharma

Trafalis, T. B., & Ince, H. Support vector machine for regression and applications to financial
forecasting. In: Proceedings of the ieee-inns-enns international joint conference on neural
networks. ijcnn 2000. neural computing: New challenges and perspectives for the new
millennium. 6. IEEE. 2000, 348-353.

Wang, W., Guo, Y., Niu, Z., & Cao, Y. Stock indices analysis based on arma-garch model. In: 2009
ieee international conference on industrial engineering and engineering management. 2009,
2143-2147. https://doi.org/10.1109/IEEM.2009.5373131.

Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? a new look at signal
fidelity measures. IEEE signal processing magazine, 26(1), 98-117.

Wanjawa, B., & Muchemi, L. (2015). Ann model to predict stock prices at stock exchange markets.
ArXiv, abs/1502.06434.

Whittle, P. (1951). Hypothesis testing in time series analysis (Vol. 4). Almqvist & Wiksells boktr.

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (mae) over the root
mean square error (rmse) in assessing average model performance. Climate research, 30(1),
79-82.

Yeze, Z., & Yiying, W. (2019). Stock price prediction based on information entropy and artificial
neural network. 2019 5th International Conference on Information Management (ICIM),
248-251.

Yu, Y., Zhu, Y., Li, S., & Wan, D. (2014). Time series outlier detection based on sliding window
prediction. Mathematical problems in Engineering, 2014.


https://doi.org/10.1109/IEEM.2009.5373131

Predicting stock return and volatility

39

Appendix

I. Tables

Table 22. ARMA orders of p and q test results

o

e

MAE

MSE

RMSE

MAPE

sMAPE

0.003876

0.00005198

0.0072

126.187

167.512

0.003876

0.00005233

0.0072

125.514

167.152

0.003872

0.00005208

0.0072

128.072

165.458

0.003873

0.0000519

0.0072

126.398

166.815

0.003859

0.0000519

0.0072

137.670

160.147

0.003871

0.00005161

0.0072

124.312

168.777

0.003861

0.00005133

0.0072

133.233

164.832

0.003922

0.00005229

0.0072

169.811

159.358

0.003878

0.0000523

0.0072

126.494

166.440

0.003892

0.00005354

0.0073

136.976

161.392

0.003870

0.00005162

0.0072

128.040

165.935

0.003866

0.00005112

0.0071

125.766

165.329

0.003879

0.00005211

0.0072

137.051

161.123

0.003876

0.00005163

0.0072

132.958

165.532

0.003917

0.00005334

0.0073

148.028

159.532

0.003872

0.00005176

0.0072

128.919

165.820

0.003872

0.00005191

0.0072

128.282

165.895

0.004512

0.00007678

0.0088

204.388

164.656

0.003848

0.00005128

0.0072

128.991

162.887

0.003905

0.0000549

0.0074

167.689

155.925

0.003866

0.00005144

0.0072

133.209

164.453

0.003868

0.0000515

0.0072

132.255

164.455

0.003990

0.00007677

0.0088

148.054

161.621

0.003876

0.00005206

0.0072

134.537

165.062
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0.003897

0.00005279

0.0073

154.040

160.215
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Table 23. Random forest results with z number of previous returns as features

Z prev. returns MAE MAPE | sMAPE MSE RMSE
1 0.0052959 | 469.225 | 143.818 | 0.0000770 | 0.0088
2 0.0044832 | 333.410 | 147.209 | 0.0000563 | 0.0075
3 0.0042926 | 300.801 | 149.292 | 0.0000528 | 0.0073
4 0.0041397 | 237.931 | 148.567 | 0.0000518 | 0.0072
5 0.0040083 | 214.825 | 147.881 | 0.0000511 | 0.0071
6 0.0039393 | 196.985 | 149.634 | 0.0000506 | 0.0071
7 0.0039410 | 207.665 | 151.329 | 0.0000506 | 0.0071
8 0.0039294 | 198.348 | 154.204 | 0.0000490 | 0.0070
9 0.0039148 | 186.982 | 153.364 | 0.0000487 | 0.0070
10 0.0038973 | 177.828 | 153.518 | 0.0000481 | 0.0069
11 0.0039089 | 178.874 | 156.561 | 0.0000487 | 0.0070
12 0.0038696 | 175.585 | 156.070 | 0.0000484 | 0.0070
13 0.0039050 | 174.623 | 158.025 | 0.0000492 | 0.0070
14 0.0038995 | 173.675 | 156.893 | 0.0000490 | 0.0070
15 0.0039023 | 166.379 | 159.744 | 0.0000493 | 0.0070
16 0.0038977 | 162.986 | 159.815 | 0.0000495 | 0.0070
17 0.0038865 | 159.830 | 159.335 | 0.0000495 | 0.0070
18 0.0038874 | 161.113 | 159.119 | 0.0000492 | 0.0070
19 0.0038810 | 162.124 | 158.474 | 0.0000499 | 0.0071

20 0.0038966 | 162.431 | 159.554 | 0.0000501 | 0.0071
21 0.0038890 | 154.264 | 159.386 | 0.0000506 | 0.0071
22 0.0038973 | 158.702 | 158.886 | 0.0000506 | 0.0071
23 0.0038998 | 160.707 | 159.739 | 0.0000499 | 0.0071
24 0.0039023 | 160.138 | 159.998 | 0.0000499 | 0.0071
25 0.0038973 | 158.256 | 160.553 | 0.0000495 | 0.0070
26 0.0038937 | 156.805 | 160.826 | 0.0000493 | 0.0070
27 0.0038922 | 150.446 | 161.143 | 0.0000495 | 0.0070
28 0.0039050 | 152.843 | 162.439 | 0.0000492 | 0.0070
29 0.0039153 | 150.154 | 162.433 | 0.0000493 | 0.0070
30 0.0039042 | 151.448 | 162.099 | 0.0000494 | 0.0070
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Table 24. Random forest results with z number of previous returns, high, low, open and close values

as features

Z prev. returns MAE MAPE | sMAPE MSE RMSE
1 0.00453270 | 340.681 | 142.120 | 0.00005382 | 0.0073
2 0.00435649 | 309.805 | 145.690 | 0.00005248 | 0.0072
3 0.00419698 | 263.201 | 146.391 | 0.00005028 | 0.0071
4 0.00408411 | 230.473 | 146.820 | 0.00004951 | 0.0070
5 0.00401075 | 210.429 | 148.088 | 0.00004932 | 0.0070
6 0.00397919 | 204.374 | 149.262 | 0.00004974 | 0.0071
7 0.00396841 | 205.916 | 149.698 | 0.00004962 | 0.0070
8 0.00396711 | 204.630 | 149.607 | 0.00004893 | 0.0070
9 0.00395640 | 196.495 | 149.702 | 0.00004832 | 0.0070
10 0.00392679 | 181.626 | 150.644 | 0.00004812 | 0.0069
11 0.00392788 | 175.247 | 152.698 | 0.00004848 | 0.0070
12 0.00391155 | 177.379 | 153.391 | 0.00004824 | 0.0069
13 0.00392271 | 171.068 | 154.486 | 0.00004870 | 0.0070
14 0.00390076 | 161.630 | 154.954 | 0.00004847 | 0.0070
15 0.00392215 | 158.702 | 156.622 | 0.00004917 | 0.0070
16 0.00391058 | 159.098 | 156.894 | 0.00004914 | 0.0070
17 0.00391353 | 158.071 | 156.554 | 0.00004945 | 0.0070
18 0.00392472 | 156.476 | 157.816 | 0.00004945 | 0.0070
19 0.00391391 | 149.576 | 158.194 | 0.00004952 | 0.0070

20 0.00392486 | 156.166 | 157.615 | 0.00004996 | 0.0071
21 0.00392728 | 152.449 | 157.995 | 0.00005053 | 0.0071
22 0.00392128 | 150.529 | 157.985 | 0.00005031 | 0.0071
23 0.00393199 | 155.495 | 159.228 | 0.00004979 | 0.0071
24 0.00393077 | 154.785 | 159.367 | 0.00004964 | 0.0070
25 0.00392367 | 159.604 | 161.343 | 0.00004934 | 0.0070
26 0.00392391 | 156.427 | 159.232 | 0.00004934 | 0.0070
27 0.00392948 | 156.751 | 161.056 | 0.00004946 | 0.0070
28 0.00393870 | 155.605 | 162.332 | 0.00004923 | 0.0070
29 0.00393208 | 146.696 | 161.457 | 0.00004982 | 0.0071
30 0.00394362 | 151.616 | 162.270 | 0.00004974 | 0.0071
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Table 25. SVR results with high, low, close open and z number of previous returns as features

Z prev. returns MAE MAPE | sMAPE MSE RMSE
1 0.0071281 | 226.278 | 149.743 | 0.0001659 | 0.0129
2 0.0185368 | 1285.321 | 162.623 | 0.0005445 | 0.0233
3 0.0170955 | 1269.167 | 152.241 | 0.0004301 | 0.0207
4 0.0125017 | 890.102 | 143.206 | 0.0002785 | 0.0167
5 0.0123816 | 880.922 | 142.846 | 0.0002734 | 0.0165
6 0.0114298 | 791.442 | 140.674 | 0.0002506 | 0.0158
7 0.0120357 | 845.513 | 142.364 | 0.0002645 | 0.0163
8 0.0129239 | 927.041 | 144.476 | 0.0002873 | 0.0169
9 0.0127585 | 905.226 | 144.252 | 0.0002825 | 0.0168
10 0.0126607 | 891.926 | 143.986 | 0.0002806 | 0.0167
11 0.0119865 | 832.990 | 142.376 | 0.0002635 | 0.0162
12 0.0117165 | 798.489 | 141.653 | 0.0002570 | 0.0160
13 0.0116267 | 787.114 | 141.432 | 0.0002550 | 0.0160
14 0.0111193 | 747.410 | 140.006 | 0.0002430 | 0.0156
15 0.0114737 | 780.215 | 140.884 | 0.0002517 | 0.0159
16 0.0115810 | 789.367 | 141.229 | 0.0002541 | 0.0159
17 0.0122861 | 857.448 | 143.114 | 0.0002710 | 0.0165
18 0.0125164 | 883.829 | 143.721 | 0.0002766 | 0.0166
19 0.0109282 | 737.403 | 139.530 | 0.0002386 | 0.0154

20 0.0103418 | 681.046 | 137.796 | 0.0002258 | 0.0150
21 0.0106389 | 710.246 | 138.630 | 0.0002322 | 0.0152
22 0.0109151 | 736.288 | 139.435 | 0.0002383 | 0.0154
23 0.0108950 | 733.836 | 139.386 | 0.0002378 | 0.0154
24 0.0111957 | 761.162 | 140.179 | 0.0002446 | 0.0156
25 0.0115122 | 790.003 | 141.057 | 0.0002519 | 0.0159
26 0.0116863 | 807.025 | 141.500 | 0.0002560 | 0.0160
27 0.0119038 | 824.726 | 142.045 | 0.0002613 | 0.0162
28 0.0121591 | 848.943 | 142.699 | 0.0002677 | 0.0164
29 0.0123041 | 863.794 | 143.059 | 0.0002713 | 0.0165
30 0.0123163 | 866.428 | 143.149 | 0.0002717 | 0.0165
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Table 26. SVR results with z number of previous returns as features

Z prev. returns MAE MAPE | sMAPE MSE RMSE
1 0.0078907 | 336.644 | 142.682 | 0.000174 | 0.0132
2 0.0077225 | 318.936 | 144.688 | 0.000170 | 0.0131
3 0.0080221 | 349.156 | 144.886 | 0.000174 | 0.0132
4 0.0088102 | 433.743 | 148.897 | 0.000188 | 0.0137
5 0.0097488 | 538.073 | 149.077 | 0.000207 | 0.0144
6 0.0097202 | 537.465 | 148.412 | 0.000206 | 0.0143
7 0.0102297 | 589.310 | 148.649 | 0.000216 | 0.0147
8 0.0102767 | 595.910 | 148.678 | 0.000217 | 0.0147
9 0.0109943 | 669.755 | 150.284 | 0.000232 | 0.0152
10 0.0114400 | 715.953 | 150.495 | 0.000242 | 0.0156
11 0.0118227 | 754.184 | 151.028 | 0.000251 | 0.0158
12 0.0121488 | 785.978 | 151.561 | 0.000259 | 0.0161
13 0.0124328 | 812.874 | 152.135 | 0.000265 | 0.0163
14 0.0126798 | 836.020 | 152.629 | 0.000271 | 0.0165
15 0.0128941 | 855.792 | 153.073 | 0.000277 | 0.0166
16 0.0130829 | 872.963 | 153.475 | 0.000281 | 0.0168
17 0.0132521 | 888.585 | 153.846 | 0.000286 | 0.0169
18 0.0133995 | 901.841 | 154.152 | 0.000289 | 0.0170
19 0.0135305 | 913.591 | 154.418 | 0.000293 | 0.0171

20 0.0136539 | 924.839 | 154.732 | 0.000296 | 0.0172
21 0.0137587 | 934.191 | 154.939 | 0.000299 | 0.0173
22 0.0138539 | 942.619 | 155.134 | 0.000301 | 0.0174
23 0.0139399 | 950.192 | 155.313 | 0.000304 | 0.0174
24 0.0140201 | 956.250 | 155.457 | 0.000306 | 0.0175
25 0.0140917 | 962.508 | 155.607 | 0.000308 | 0.0175
26 0.0141570 | 968.213 | 155.742 | 0.000310 | 0.0176
27 0.0142170 | 971.503 | 155.823 | 0.000311 | 0.0176
28 0.0142708 | 976.186 | 155.933 | 0.000313 | 0.0177
29 0.0143196 | 980.432 | 156.032 | 0.000314 | 0.0177
30 0.0143594 | 984.980 | 156.082 | 0.000315 | 0.0178
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Table 27. KNN results with z number of previous returns as features

Z prev. returns MAE MAPE | sMAPE MSE RMSE
1 0.0047606 | 369.925 | 144.315 | 0.0000641 | 0.0080
2 0.0046811 | 357.278 | 147.982 | 0.0000621 | 0.0079
3 0.0045044 | 371.885 | 143.125 | 0.0000561 | 0.0075
4 0.0045869 | 290.439 | 145.998 | 0.0000579 | 0.0076
5 0.0045283 | 310.523 | 145.741 | 0.0000598 | 0.0077
6 0.0044336 | 297.080 | 144.074 | 0.0000580 | 0.0076
7 0.0043958 | 281.959 | 146.275 | 0.0000575 | 0.0076
8 0.0044230 | 259.937 | 148.532 | 0.0000607 | 0.0078
9 0.0043117 | 270.017 | 143.964 | 0.0000572 | 0.0076
10 0.0042986 | 243.104 | 143.730 | 0.0000623 | 0.0079
11 0.0043377 | 233.440 | 144.597 | 0.0000626 | 0.0079
12 0.0043024 | 249.190 | 145.794 | 0.0000610 | 0.0078
13 0.0042876 | 232.070 | 144.274 | 0.0000612 | 0.0078
14 0.0043653 | 253.888 | 147.133 | 0.0000614 | 0.0078
15 0.0043717 | 271.345 | 148.517 | 0.0000632 | 0.0079
16 0.0043432 | 249.885 | 147.773 | 0.0000632 | 0.0079
17 0.0043217 | 279.719 | 146.293 | 0.0000612 | 0.0078
18 0.0043395 | 262.353 | 145.598 | 0.0000617 | 0.0079
19 0.0043209 | 270.228 | 147.161 | 0.0000610 | 0.0078

20 0.0043772 | 278.542 | 149.514 | 0.0000621 | 0.0079
21 0.0043470 | 267.713 | 147.895 | 0.0000607 | 0.0078
22 0.0043425 | 256.855 | 148.240 | 0.0000623 | 0.0079
23 0.0043027 | 244.428 | 148.984 | 0.0000599 | 0.0077
24 0.0042582 | 252.819 | 149.057 | 0.0000596 | 0.0077
25 0.0042596 | 241.657 | 147.082 | 0.0000606 | 0.0078
26 0.0043107 | 236.553 | 148.348 | 0.0000607 | 0.0078
27 0.0042963 | 264.332 | 147.221 | 0.0000600 | 0.0077
28 0.0043111 | 252.394 | 146.838 | 0.0000613 | 0.0078
29 0.0042948 | 265.302 | 147.454 | 0.0000614 | 0.0078
30 0.0043344 | 282.993 | 144.467 | 0.0000617 | 0.0079
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Table 28. KNN results with z number of previous returns, high, low, open and close values as

features

Z prev. returns MAE MAPE sMAPE MSE RMSE
1 0.0043319 | 377.420% | 138.089% | 0.0000449 | 0.0067
2 0.0043319 | 377.420% | 138.089% | 0.0000449 | 0.0067
3 0.0043319 | 377.420% | 138.089% | 0.0000449 | 0.0067
4 0.0043386 | 377.459% | 138.461% | 0.0000450 | 0.0067
5 0.0043386 | 377.459% | 138.461% | 0.0000450 | 0.0067
6 0.0043386 | 377.459% | 138.461% | 0.0000450 | 0.0067
7 0.0043431 | 377.931% | 138.677% | 0.0000450 | 0.0067
8 0.0043431 | 377.931% | 138.677% | 0.0000450 | 0.0067
9 0.0043431 | 377.931% | 138.677% | 0.0000450 | 0.0067
10 0.0043427 | 378.271% | 138.483% | 0.0000450 | 0.0067
11 0.0043427 | 378.271% | 138.483% | 0.0000450 | 0.0067
12 0.0043427 | 378.271% | 138.483% | 0.0000450 | 0.0067
13 0.0043445 | 378.317% | 138.578% | 0.0000450 | 0.0067
14 0.0043453 | 378.375% | 138.480% | 0.0000450 | 0.0067
15 0.0043453 | 378.375% | 138.480% | 0.0000450 | 0.0067
16 0.0043453 | 378.375% | 138.480% | 0.0000450 | 0.0067
17 0.0043474 | 378.335% | 138.461% | 0.0000451 | 0.0067
18 0.0043474 | 378.335% | 138.461% | 0.0000451 | 0.0067
19 0.0043474 | 378.335% | 138.461% | 0.0000451 | 0.0067

20 0.0043496 | 378.377% | 138.364% | 0.0000451 | 0.0067
21 0.0043496 | 378.377% | 138.364% | 0.0000451 | 0.0067
22 0.0043496 | 378.377% | 138.364% | 0.0000451 | 0.0067
23 0.0043496 | 378.377% | 138.364% | 0.0000451 | 0.0067
24 0.0043529 | 378.722% | 138.437% | 0.0000452 | 0.0067
25 0.0043529 | 378.722% | 138.437% | 0.0000452 | 0.0067
26 0.0043529 | 378.722% | 138.437% | 0.0000452 | 0.0067
27 0.0043569 | 379.016% | 138.522% | 0.0000452 | 0.0067
28 0.0043569 | 379.016% | 138.522% | 0.0000452 | 0.0067
29 0.0043569 | 379.016% | 138.522% | 0.0000452 | 0.0067
30 0.0043565 | 379.253% | 138.437% | 0.0000452 | 0.0067
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Table 29. GARCH orders of p and q test results

MAE

MAPE

sMAPE

MSE

RMSE

4.16E-06

66.972

51.050

2.04E-10

1.43E-05

6.16E-06

106.751

57.429

3.92E-10

1.98E-05

6.33E-06

115.524

59.001

3.91E-10

1.98E-05

6.40E-06

124.390

60.561

3.72E-10

1.93E-05

6.46E-06

133.085

61.555

3.84E-10

1.96E-05

3.97E-06

72.304

52.018

1.33E-10

1.15E-05

8.43E-06

209.655

71.817

4.28E-10

2.07E-05

5.89E-06

122.275

60.096

2.67E-10

1.63E-05

5.94E-06

130.968

61.220

2.50E-10

1.58E-05

5.97E-06

139.548

62.243

2.44E-10

1.56E-05

8.02E-06

208.194

72.160

4.14E-10

2.03E-05

8.78E-06

220.065

73.488

4.74E-10

2.18E-05

6.51E-06

131.500

62.271

3.31E-10

1.82E-05

6.51E-06

140.150

63.295

3.10E-10

1.76E-05

6.54E-06

148.150

64.128

2.99E-10

1.73E-05

8.22E-06

212.977

72.970

4.41E-10

2.10E-05

9.04E-06

223.067

74.103

5.16E-10

2.27E-05

6.84E-06

136.827

63.606

3.81E-10

1.95E-05

6.81E-06

144.743

64.322

3.59E-10

1.89E-05

6.86E-06

152.805

65.045

3.47E-10

1.86E-05

8.39E-06

218.103

73.642

4.62E-10

2.15E-05

9.26E-06

228.399

74.863

5.38E-10

2.32E-05

7.03E-06

142.724

64.977

3.93E-10

1.98E-05

7.00E-06
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1.93E-05
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Table 30. GARCH-ANN relu layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 3.12E-06 | 124.7022 | 67.33394 | 2.81E-10 | 1.68E-05
adam 2.95E-06 | 88.68045 | 60.7522 | 2.83E-10 | 1.68E-05
adadelta | 2.93E-06 | 80.97395 | 59.93846 | 2.84E-10 | 1.68E-05
adagrad | 2.93E-06 | 78.34828 | 59.81356 | 2.84E-10 | 1.69E-05
adamax | 3.01E-06 | 104.7715 | 63.38418 | 2.82E-10 | 1.68E-05
nadam | 2.93E-06 | 83.11572 | 60.14456 | 2.84E-10 | 1.68E-05
ftrl 4.25E-05 | 3079.608 200 2.09E-09 | 4.57E-05

Table 31. GARCH-ANN sigmoid layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 4.17E-06 | 115.5875 200 2.97E-10 | 1.72E-05
adam 2.98E-06 | 62.8196 | 61.86965 | 2.86E-10 | 1.69E-05
adadelta | 2.93E-06 | 81.31975 | 60.00108 | 2.84E-10 | 1.69E-05
adagrad | 2.93E-06 | 77.43968 | 59.78577 | 2.84E-10 | 1.69E-05
adamax | 3.01E-06 | 60.41674 | 63.48281 | 2.87E-10 | 1.69E-05
nadam | 3.05E-06 | 112.6613 | 64.87926 | 2.82E-10 | 1.68E-05
ftrl 2.95E-06 | 68.75039 | 60.20398 | 2.85E-10 | 1.69E-05

Table 32. GARCH-ANN softmax layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 3.79E-06 | 209.0068 | 83.89194 | 2.79E-10 | 1.67E-05
adam 2.94E-06 | 69.6599 | 60.08016 | 2.85E-10 | 1.69E-05
adadelta | 2.94E-06 | 86.32181 | 60.48747 | 2.84E-10 | 1.68E-05
adagrad | 2.95E-06 | 88.21622 | 60.71242 | 2.83E-10 | 1.68E-05
adamax | 2.94E-06 | 71.64111 | 59.85888 | 2.85E-10 | 1.69E-05
nadam | 2.96E-06 | 65.20224 | 60.98233 | 2.86E-10 | 1.69E-05
ftrl 2.94E-06 | 85.69063 | 60.41954 | 2.84E-10 | 1.68E-05
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Table 33. GARCH-ANN softplus layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 3.42E-06 | 164.3105 | 75.64893 | 2.80E-10 | 1.67E-05
adam 2.96E-06 | 92.10317 | 61.2234 | 2.83E-10 | 1.68E-05
adadelta | 2.93E-06 | 78.49231 | 59.82324 | 2.84E-10 | 1.69E-05
adagrad | 3.02E-06 | 107.9957 | 63.98045 | 2.82E-10 | 1.68E-05
adamax | 2.93E-06 | 80.29211 | 59.91874 | 2.84E-10 | 1.69E-05
nadam | 3.27E-06 | 145.7434 | 71.79555 | 2.81E-10 | 1.68E-05
ftrl 2.95E-06 | 90.86379 | 61.05119 | 2.83E-10 | 1.68E-05

Table 34. GARCH-ANN softsign layer activation function results

Optimiser MAE MAPE sMAPE MSE RMSE

rmsprop | 3.26E-06 | 58.66021 | 81.8609 | 2.90E-10 | 1.70E-05
adam 2.93E-06 | 79.36901 | 59.83047 | 2.84E-10 | 1.69E-05
adadelta | 2.94E-06 | 82.87181 | 60.14216 | 2.84E-10 | 1.68E-05
adagrad | 2.94E-06 | 83.9401 | 60.24264 | 2.84E-10 | 1.68E-05
adamax | 3.05E-06 | 112.8718 | 64.90179 | 2.82E-10 | 1.68E-05
nadam | 2.93E-06 | 76.71803 | 59.73889 | 2.84E-10 | 1.69E-05
ftrl 4.26E-05 | 3086.755 200 2.10E-09 | 4.58E-05

Table 35. GARCH-ANN tanh layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 3.05E-06 | 113.3224 | 65.00926 | 2.82E-10 | 1.68E-05
adam 3.14E-06 | 57.48152 | 72.32692 | 2.88E-10 | 1.70E-05
adadelta | 2.93E-06 | 81.68106 | 60.03393 | 2.84E-10 | 1.69E-05
adagrad | 2.93E-06 | 72.73026 | 59.78111 | 2.85E-10 | 1.69E-05
adamax | 2.94E-06 | 71.05777 | 59.89117 | 2.85E-10 | 1.69E-05
nadam | 3.12E-06 | 124.7693 | 67.33987 | 2.81E-10 | 1.68E-05
ftrl 4.25E-05 | 3081.122 200 2.09E-09 | 4.57E-05
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Table 36. GARCH-ANN selu layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 3.17E-06 | 57.59447 | 74.99062 | 2.89E-10 | 1.70E-05
adam 2.99E-06 | 61.72146 | 62.40456 | 2.86E-10 | 1.69E-05
adadelta | 2.93E-06 | 78.83218 | 59.86649 | 2.84E-10 | 1.69E-05
adagrad | 2.93E-06 | 72.7798 | 59.80047 | 2.85E-10 | 1.69E-05
adamax | 2.93E-06 | 83.17015 | 60.13983 | 2.84E-10 | 1.68E-05
nadam | 3.28E-06 | 147.8645 | 72.22635 | 2.80E-10 | 1.67E-05
ftrl 4.21E-05 | 3047.316 200 2.05E-09 | 4.53E-05

Table 37. GARCH-ANN elu layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 3.53E-06 | 178.9312 | 78.44511 | 2.80E-10 | 1.67E-05
adam 2.94E-06 | 85.03473 | 60.31237 | 2.83E-10 | 1.68E-05
adadelta | 2.94E-06 | 82.85015 | 60.13854 | 2.84E-10 | 1.68E-05
adagrad | 2.93E-06 | 80.13859 | 59.91075 | 2.84E-10 | 1.69E-05
adamax | 3.07E-06 | 116.181 | 65.57151 | 2.82E-10 | 1.68E-05
nadam | 2.94E-06 | 68.60321 | 60.18833 | 2.85E-10 | 1.69E-05
ftrl 4.24E-05 | 3069.495 200 2.08E-09 | 4.56E-05

Table 38. GARCH-ANN exponential layer activation function results

Optimiser | MAE MAPE sMAPE MSE RMSE

rmsprop | 4.06E-06 | 238.4027 | 88.72346 | 2.79E-10 | 1.67E-05
adam 2.96E-06 | 93.92799 | 61.49769 | 2.83E-10 | 1.68E-05
adadelta | 2.93E-06 | 82.2518 | 60.08522 | 2.84E-10 | 1.69E-05
adagrad | 3.22E-06 | 58.05996 | 78.79319 | 2.89E-10 | 1.70E-05
adamax | 3.00E-06 | 61.28713 | 62.76268 | 2.87E-10 | 1.69E-05
nadam | 2.96E-06 | 66.34733 | 60.66262 | 2.86E-10 | 1.69E-05
ftrl 2.94E-06 | 69.03516 | 60.16305 | 2.85E-10 | 1.69E-05
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II. Charts
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gure 23. SVR number of previous returns MAE results
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Figure 25. SVR nr of previous returns RMSE results
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Figure 27. KNN number of previous returns MAE results
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Figure 29. KNN number of previous returns RMSE results
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Figure 24. SVR all features MAE results
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Figure 26. SVR all features RMSE results
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Figure 28. KNN all features MAE results
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Figure 30. KNN all features RMSE results
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Figure 32. Standardised residuals with sliding window method
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KOKKUVOTE
Aktsia tootluse ja volatiilsuse ennustamine masindppe ja okonomeetriliste

mudelitega — Balti aktsiaturu vordlev juhtumianaliiiis

Aktsia tootluse ja volatiilsuse suure tdpsusega ennustamine on aktsiaturu analiiiisi iiks huvitavamaid
teemasid. Kaks peamist lihenemisviisi aktsiate tootluse prognoosimiseks on 6konomeetrilised mudelid ja
masindpe. Ent antud teema puhul kdige parema ldhenemisviisi leidmine ei ole lihtne {ilesanne. T66 annab
oma panuse kirjandusse, pakkudes detailset analiiiisi erinevate 6konomeetriliste ja masindppe tehnikate kohta
NASDAQ Balti borsi néitel.

Analiitisime pohjalikult erinevate masindppe ja dkonomeetriliste ldhenemisviiside ennustustipsust OMX
Baltic Benchmark hinnaindeksi tootluse ja volatiilsuse prognoosimisel. Saime teada, et sobiva metoodika
valik s6ltub suuresti eelistatud hindamistehnikast ja andmestiku suurusest.

Meie analiiiisi tulemused niitavad, et vaadeldavad masindppe mudelid iiletavad iildiselt ARMA ldhen-
emisviisi erinevate treenimis- ja testimisvalimi suuruste ja mdddikute puhul. Eelkdige vdime oelda, et
tugivektori regressioonimudel ja k-lahima naabri mudel pakuvad enamikul meie poolt vaadeldud juhtudel
paremaid ennustusi, samas kui otsustusmetsa ja tehisnirvivorgu GARCHi (GARCH-ANNI) joudlus vorreldes
vastavate okonomeetriliste mudelitega (ARMA ja GARCH) sdltus treenimise ja testimise valimi suurusest
ning moddikust. Siiski voib GARCHi ja GARCH-ANNI vordlus anda olenevalt kasutatavatest andmetest
erinevaid tulemusi. Eelnevate toode ja meie analiiiisi pdhjal soovitab kédesolev artikkel sobiva masindppe-
mudeli valikul poorata tdhelepanu ka ennustusvigu hindavale mdddikule ning treenimise ja testimise valimi

suurustele.
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