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1 Introduction

Quite a number of empirical studies have been undertaken to shed light on

the connectedness of volatility across agricultural commodities (see, for exam-

ple, Trujillo-Barrera et al. (2012), Beckmann and Czudaj (2014), Gardebroek et

al. (2016), Bonato (2019), Luo and Chen (2019), Cagli et al. (2023), Luo et al.

(2023)), with Marfatia et al. (2022) highlighting that accounting for co-volatility

of Chinese futures of five (corn, cotton, palm, wheat, and soybeans) agricul-

tural commodities improves the accuracy of volatility forecasts in particular for

corn, cotton, and wheat individually. We contribute to this area of research by

exploring whether stacking algorithms that have been developed in the recent

bioinformatics literature help to improve the accuracy of out-of-sample forecasts

of the intraday data-based realized volatility (RV) of 15 important agricultural

commodities during the daily sample period of July, 2015 to April, 2023.

An important advantage of using RV for our empirical analyses derives from

the rich information contained in intraday data, besides being a consistent and

asymptotically unbiased estimator of volatility (Andersen and Bollerslev, 1998;

McAleer and Medeiros, 2008; Chatziantoniou et al., 2021). In addition, RV is an

observable and unconditional metric of “volatility”. This, in turn, is unlike the

latent processes underlying the class of Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) and Stochastic Volatility (SV) models that have been

widely used for predicting agricultural commodity price volatility (see, Degian-

nakis et al. (2022) and Luo et al. (2022) for reviews of this extensive literature).

Moreover, the dynamics of RV can be easily modeled by means of the heteroge-

neous autoregressive (HAR-) RV model (Corsi, 2009). The HAR-RV model has
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been extensively studied in research on realized volatility, including that of agri-

cultural commodities (as reviewed in Bonato et al. (2022, 2024, forthcoming)),

because it is able to capture long-memory and multi-scaling properties of real-

ized volatility, as has been reported by Gil-Alana et al. (2012), and Živkov et

al. (2019, 2022). Because the HAR-RV model employs RVs at different time

resolutions to model and predict RV, it can be interpreted as a simple empiri-

cal representation of the heterogeneous market hypothesis (HMH; Müller et al.,

1997), which stipulates that asset markets (in our case, markets for agricultural

commodities) are populated by various types of market participants such as, in-

vestors, speculators, and traders, who, in turn, in turn, vary in their sensitivity

to information flows at high and low frequencies.

Another advantage of the HAR-RV model is that it can easily be adapted to a

multi-task forecasting setting, i.e., a setting where a forecaster seeks to forecast

not only the RV of a single agricultural commodity, but the RVs of several agricul-

tural commodities simultaneously. One possibility to address such a multi-task

forecasting problem is to consider as a modeling framework one of the multivari-

ate HAR-RV models with heteroskedastic error structures, as has been studied

by, for instance, Bubák et al. (2011), de Nicola et al. (2016), Luo and Chen

(2019, 2020a, b), Marfatia et al. (2022), Luo et al. (forthcoming). The focus of

many studies in this area, however, have been on modeling and forecasting co-

volatilities (see, for example, Asai and McAleer (2017), Čech and Barunı́k (2017),

Asai et al. (2019, 2020), Luo and Chen (2019, 2020)). Moreover, applications of

the HAR-RV-cum-heteroskedastic-errors models are often restricted to settings

where the number of RVs to be analyzed is relatively small, as was the case in
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Luo and Chen (2019) and Marfatia et al. (2022) involving, respectively, seven

and five agricultural commodities. This is due to the fact that, in a multivari-

ate setting, the number of parameters to be estimated rapidly increases in the

dimension of the model, unless a researcher is willing to impose restrictions on

parameters and/or functional forms so as to obtain a parsimonious representa-

tion of the heteroskedastic error structures.

In our case, the dataset comprises RVs of 15 agricultural commodities (and,

in an extended model, in addition the RVs of three important energy commodi-

ties and the RVs of five precious metals), and so we use various computationally

efficient multi-task stacking algorithms that have been proposed in the recent

bioinformatics literature (along with a multivariate shrinkage estimator) to re-

examine the out-of-sample predictability of the RVs of the commodities in our

sample (for a recent application of stacking in a univariate forecasting exercise

of stock returns, see Zhao and Cheng (2022)). Also, we focus on direct spillovers

among the RVs as captured by a multi-task HAR-RV model, and do not consider

the issue of forecasting co-volatility, which requires imposing further structure

on the residuals. The multi-task stacking algorithms are easy to implement even

when the dimension of the model is large. Moreover, they make it possible to em-

ploy and combine alternative popular machine-learning algorithms that make it

possible to estimate a multi-task HAR-RV model in a data-driven way, that is,

without imposing a priori any specific structure that restricts the spillover dy-

namics across the RVs. Finally, the multi-task stacking algorithms can be set

up in a way such that the resulting statistical model captures potential nonlin-

ear structures in the data, an issue that certainly deserves special attention in
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the wake of the type of sudden outbreaks and clustering of volatility typical of

financial markets, and of markets for agricultural commodities as well. In the

process, our paper adds to the growing literature on modeling and predicting RV

of agricultural commodities by investigating the role of volatility spillovers, where

researchers in this literature have thus far otherwise relied on realized moments

(such as realized kurtosis and realized jumps) and various other predictors that

relate, for example, to the state of financial and other (non-agricultural) com-

modity markets, investor sentiment, climate-change-related risks, and infectious

disease-related uncertainty (see, for example, Tian et al. (2017a, b), Yang et al.

(2017), Degiannakis et al. (2022), Luo et al., (2022), Marfatia et al. (2022), Shiba

et al. (2022), Bonato et al. (2022, 2024, forthcoming)), Gupta and Pierdzioch

(2023), Luo and Zhang (2024)).

Agricultural commodities have become increasingly financialized (Bahloul et

al., 2018; Aı̈t-Youcef, 2019; Ji et al., 2020). The process has caused institu-

tional investors to increase their holdings in agricultural commodities relative to

traditional assets. Naturally, besides the academic value of our work, accurate

forecasts of the volatility of agricultural commodity prices are of key importance

for investors, because volatility is a core input in investment and portfolio alloca-

tion decisions, risk management, derivatives pricing, and assessments of hedg-

ing performance (Poon and Granger, 2003; Rapach et al., 2008). In addition,

agricultural commodities comprise a large proportion of household consumption

spending, implying that price volatility in agricultural commodities markets is

likely to have substantial consequences for food security, especially as far as

the economically vulnerable groups of the population are concerned (FAO, 2010,

4



2011; Ordu, et al., 2018). Hence, from a policy perspective, it is important

to produce accurate high-frequency forecasts of agricultural commodity prices

volatility so that policies can be discussed and implemented in a timely manner

to protect those vulnerable groups in particular from large and adverse food price

fluctuations (Greb and Prakash, 2015; 2017).

In order to get to our empirical findings, we organize the rest of the paper as

follows. In Section 2, we provide a description of the data we use in our study,

while we outline in Section 3 our methods. In Section 4, we present our empirical

results. In Section 5, we conclude.

2 Data

We use in our empirical analysis data on RV of 15 agricultural commodities.

The data is available publicly for download from the internet page of Professor

Dacheng Xiu.1 The data are based on (Globex) futures data for the following

15 agricultural commodities: soybean oil futures (BO), cocoa futures (CC), corn

futures (C), cotton no. 2 futures (CT), feeder cattle futures (FC), coffee C futures

(KC), lumber futures (LB), live cattle futures (LC), lean hogs futures (LH), orange

juice futures (OJ), oats futures (O), sugar #11 futures (SB), soybean meal futures

(SM) , soybean futures (S), and wheat futures CBOT (W). After matching the data

by date, the matched dataset starts on 27/07/2015 and ende on 28/04/2023.

We plot the RV data of the agricultural commodities in Figure 1. The RVs display

a discernible heterogeneity across the agricultural commodities, and they also

1Internet address: https://dachxiu.chicagobooth.edu/#risklab. Data downloaded in
May 2024.
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exhibit the type of clusters and sudden outbursts characteristic of many financial

market volatilities.

− Figure 1 about here. −

In order to obtain a first glimpse of the comovement of the RVs, we plot their full-

sample contemporaneous correlation matrix in Figure 2. The contemporaneous

correlations vary from weakly negative to strongly positive, where the positive

correlations are mainly collected in the lower part of the matrix. For example, we

observe strong positive contemporaneous correlations between C and S, S and

SM, and LC and FC, among others. While the full-sample contemporaneous cor-

relations shed light on an important feature of the data, one should bear in mind

that the correlations do not inform about the question whether the comovement

of the RVs can be exploited in a multi-task out-of-sample forecasting exercise to

improve predictive accuracy at various forecast horizons.

− Figure 2 about here. −

3 Methods

3.1 Forecasting Models

We frame our empirical analysis in terms of the popular HAR-RV model developed

by Corsi (2009). This model can be specified by the following equation:

RVt+h = β0 + β1RVt + β2RVIF,t + β3RVLF,t + ut+h, (1)
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which we estimate by the ordinary-least-squares (OLS) technique, βj, j = 0, .., 3

are the coefficients to be estimated, ut+h denotes a disturbance term, and RVt+h

denotes the average realized volatility over the forecast horizon, h. We study

in our empirical research a short, two intermediate, and a long forecast hori-

zon. To this end, we specify h = 1, 5, 10, 22. The predictors are the daily realized

volatility, RVt, the intermediate-frequency (IF) realized volatility, RVt,IF , and the

low-frequency (LF) realized volatility, RVt,LF . We define the IF realized volatility as

the average realized volatility from period t− 5 to period t− 1, and the LF realized

volatility as the average realized volatility from period t − 22 to period t − 1, as

computed using the matched data.

We emphasize that, in order to avoid non-negativity constraints and to bring

the data closer to normality, we use the natural logarithm of RV to estimate the

HAR-RV model (and its extension to the HAR-RV-S model, which accounts for

potential spillover effects. We evaluate the resulting forecasts, however, in terms

of the anti-log of RV.

The variant of the HAR-RV model that accounts for spillover effects, the HAR-

RV-S model, is given by the following equation:

RVt+h,i = β0+β1RVt,i+β2RVIF,t,i+β3RVLF,t,i+
∑
j 6=i

(β4,jRVt,j + β5,jRVIF,t,j + β6,jRVLF,t,j)+ut+h,

(2)

where i is the agricultural commodity being studied, and the index j denotes the

other agricultural commodities, Hence, we obtain the HAR-RV-S model by adding

the daily, intermediate-frequency, and low-frequency realized volatilities of the

other agricultural commodities and, thereby, account for potential spillover ef-
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fects at different time resolutions. We emphasize that the HAR-RV-S model cap-

tures direct spillover effects among the RVs, not the dynamics of co-volatilities.

We use the R language and environment for statistical computing (R Core

Ream 2023; R version 4.3.1) to estimate our forecasting models and to compute

all other results that we lay out in this research. We estimate the forecast-

ing models either by means of a recursively expanding estimation window or by

means of a rolling-estimation window. We use 50% of the data to initialize the

recursive estimations. Similarly, we use 50% of the data to define the length

of a rolling-estimation window. Finally, we use the root-mean-squared forecast-

ing error (RMSFE) and the mean-absolute forecasting error (MAFE) to evaluate

the out-of-sample performance of the forecasting models, where we compute the

ratio of the RMSFE (MAFE) of the HAR-RV-S model and the HAR-RV model to

alleviate the interpretation of our empirical results. Hence, a RMSFE (MAFE)

ratio smaller than unity implies that the HAR-RV-S model outperforms the HAR-

RV model, while a ratio larger than unity signals that the HAR-RV model is the

better forecasting model.

3.2 Stacking Algorithms

Given that our sample comprises 15 agricultural commodities, and we have to

consider (leaving the intercept term apart) in total 15× 3 = 45 predictors, we use

computationally efficient stacking algorithms to estimate the forecasting model

given in Equation (2).

The first stacking algorithm that we use (we call this algorithm henceforth

the baseline stacking algorithm) has been studied recently by Rauschenberger
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and Glaab (2021). This baseline stacking algorithm requires that we treat the

forecasting model given in Equation (2) as a base learner. Accordingly, we es-

timate 15 base learners, one for every agricultural commodity. Given the large

number of parameters to be estimated, we estimate the base learners either by

means of the Lasso estimator, as an elastic net, or by means of the Ridge regres-

sion estimator (see Tibshirani (1996), Zou and Hastie (2005)), where we choose

the corresponding shrinkage parameter using 10-fold cross validation (CV). We

use the CV-based out-of-fold predictions from the base learners to construct a

matrix, ĤCV , with 15 columns, one for every agricultural commodity. Finally, we

construct a meta learner by estimating a regression model, one for every agricul-

tural commodity, of RVt+h, on all predictors in ĤCV . Hence, the baseline stacking

algorithm implies that the second-stage meta learners extract the information

embedded in the predictors of the base learners in a way such that the forecast

of RVt+h combines in a linear way the first-stage estimated effects on all RVs.

We use the shrinkage estimator that we apply to the base learners to estimate

the meta learners. We use the R add-on package “joinet” (Rauschenberger and

Glaab 2021) to implement the baseline stacking algorithm.

In addition, we use a modified stacking algorithm that has been proposed

recently by Xing et al. (2020). Specifically, we use their residual stacking algo-

rithm and the corresponding R add-on “MTPS” package. The modified stacking

algorithm requires that we fit base learners in the first stage and compute the

resulting fitted values of the RVs. One then models the residuals one obtains

for agricultural commodity k using the fitted first-stage RVs (excluding the one

for k) and obtains a meta learner using the first-stage base learner plus the fit-
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ted residual function. As a result, one can combine, for example, a first-stage

Lasso estimator with a another Lasso estimator or, in case one suspects that the

data feature nonlinear patterns that are worthwhile studying, regression trees

(Breiman 1984) to obtain a meta learner. We call the latter a Lasso-RF model

because a regression tree represents a general (rather than a linear) residual

function.

4 Empirical Results

4.1 Full-Sample Results

We start the discussion of our empirical results by eyeballing the heatmaps we

plot in Figure 3, which show the full-sample coefficients of the HAR-RV-S model

for the four different forecasting horizons. The results are based on the Lasso

version of the baseline stacking algorithm. The upper left heatmap shows that at

the short forecasting horizon, h = 1, the coefficients of the classic HAR-RV model

(that is, the diagonal cells of the map) dominate the scenery. The colors of most

of the off-diagonal cells indicate that the spillover coefficients are close to zero

and, in some cases, negative. The coefficients of the HAR-RV-S model somewhat

gain in prominence as we move on to one of the intermediate forecast horizons,

h = 5, 10, plotted in the upper right and lower left heatmaps. While there are

several positive off-diagonal coefficients, we also observe various negative esti-

mated coefficients, especially when we consider the off-diagonal RVLF coefficients

in the upper part of the heatmaps. Finally, at the long-forecast horizon, h = 20,

it appears that, while there are still some noticeable spillover effects, the own
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RVLF coefficients gain somewhat in relative importance again (lower right panel).

Taken together, the estimated coefficients indicate that it may be possible to

improve in-sample model fit by accounting for spillover effects.

− Figures 3 and 4 about here. −

The results we summarize in Figure 4 illustrate that this is indeed the case.

Figure 4 plots in-sample ratios of the RMSFE for a comparison of the HAR-RV-

S model with the HAR-RV model. A RMSFE ratio smaller than unity indicates

that the HAR-RV-S model produces a smaller in-sample RMSFE than the HAR-

RV model. The results, irrespective of whether we study a Lasso estimator, an

elastic net, or a Ridge regression estimator, indicate that the in-sample fit of the

HAR-RV-S model relative to the classic HAR-RV model tends to improve as we

increase the length of the forecast horizon.

4.2 Forecasting Results

In-sample fit, of course, does not necessarily carry over to an out-of-sample anal-

ysis. We start our comparison of the out-of-sample performance of the HAR-RV-S

model, as estimated by the baseline stacking estimator, with that of the HAR-RV

model, estimated by the OLS technique. Figure 5 depicts the resulting RMSFE

ratios that we obtain when we consider a recursive-estimation window, while

Figure 6 depicts the corresponding RMSFE ratios for a rolling-estimation win-

dow. The key result for both types of estimation windows is that the classic

HAR-RV model outperforms the HAR-RV-S model for the vast majority of com-

modities, especially when we increase the length of the forecasting horizon. This

11



key result is not sensitive to the specific choice of the shrinkage estimator (Lasso

estimator, elastic net, Ridge regression).

− Figures 5 and 6 about here. −

Figure 7 shows, for the example of a recursive-estimation window, that we ob-

serve the superior performance of the HAR-RV model relative to the HAR-RV-S

model also when we consider the MAFE as our metric of forecasting accuracy.

The MAFE ratios should be less sensitive to large forecasting error in the wake

of a sudden outburst of RV (see Figure 1) than the RMSFE ratio, but the results

clearly demonstrate that our key result is robust to the change of the metric of

forecast accuracy.

− Figure 7 about here. −

Figure 8 (for a recursive-estimation window) and Figure 9 (for a rolling-estimation

window) summarize the results we obtain when we study the modified stacking

algorithm. For the modified stacking algorithm, we consider four alternative

combinations of estimators: we consider a Lasso-Lasso estimator, a Lasso-RF

(that is, a general regression-tree-based residual function) estimator, a Ridge-

Ridge estimator, and a Ridge-RF estimator. Four all four combinations of es-

timators, we use the RMSFE ratio to quantify relative forecasting performance.

Across the four combinations of estimators, we observe that the HAR-RV-S model

does not outperform the classic HAR-RV model. Quite to the contrary, the HAR-

RV model exhibits a robust superior performance, especially as the length of the

forecasting horizon increases.

− Figures 8 and 9 about here. −
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4.3 Robustness Checks

As our first robustness check, we summarize in Figures 10 (recrusive-estimation

window) and 11 (rolling-estimation window) results for a multivariate Lasso, a

multivariate elastic net, and a multivariate Ridge regression estimator. For esti-

mation of the multivariate shrinkage estimators, we use the R add-on package

“glmnet” (Friedman et al. 2010). We observe for the short forecast horizon a few

cases for which the HAR-RV-S model performs better than the classic HAR-RV

model, but the general message conveyed by the results is in line with the results

for the stacking algorithms. The classic HAR-RV model performs well for the ma-

jority of agricultural commodities at the short forecast horizon, and it performs

better than the HAR-RV-S model at the intermediate and long forecast horizons.

− Figures 10 and 11 about here. −

As another robustness check, we study the relative performance of the HAR-RV-

S model along the quantiles of the distribution of the actual realizations of RV

during the out-of-sample period. We plot the results in Figures 12 (recursivce-

estimation window) and 13 (rolling-estimation window), where we focus on the

baseline stacking algorithm for the sake of space. We observe that the HAR-RV-

S model slightly outperforms the HAR-RV model at the short forecast horizon

for intermediate quantiles close to the median, mainly when we consider a Lasso

estimator. For the intermediate and long forecast horizons, in contrast, the HAR-

RV model clearly outperforms the HAR-RV-S model. The relative performance of

the HAR-RV-S model only starts improving at some of the very upper quantiles,

but this improvement is not strong enough to beat the forecasting performance

of the HAR-RV model in a robust way.
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− Figures 12 and 13 about here. −

As yet another robustness check, we consider the possibility that the strength of

spillover effects between the RVs has been varying over time. If so, the perfor-

mance of the HAR-RV-S model to the classic HAR-RV model may have undergone

corresponding changes over time. In order to study this question in some more

detail, we plot in Figure 14 rolling-window estimates of the Diebold and Yil-

maz (2009, 2023) total dynamic spillover index (implemented using the R add-on

package “Spillover”; see Urbina (2023); see Bubák et al. (2011) for a discussion of

the link between the multivariate HAR-RV model and the Diebold-Yilmaz index).

The estimation results clearly reveal that the strength of the total spillover effects

among the RVs of the agricultural commodities in our sample has increased over

time. This increase in the strength of the total spillover effects warrants a closer

inspection of the relative forecasting performance of the HAR-RV-S and HAR-RV

models during subsample periods.

− Figure 14 about here. −

We summarize the results of such a subsample analysis in Figures 15 (recursive-

estimation window) and 16 (rolling-estimation window), where we use the first

450 out-of-sample forecasts to define the first subsample period, and the re-

maining forecasts to define the second subsample period (the exact number of

out-of-sample forecasts depends on the forecast horizon). While we find a supe-

rior performance of the HAR-RV-S model in terms of the RMSFE ratio for some

combinations of agricultural commodities and forecast horizons, the general pic-

ture that emerges from the analysis of the subsamples is that the relative fore-

casting performance of the HAR-RV-S model is not systematically better in the
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second than in the first subsample. There are a few exceptions from this general

picture. For example, in some model configurations, the HAR-RV-S model out-

perform the HAR-RV model in the second but not in the first subsample when

we consider the RVs of CC and KC, but not at all forecast horizons and not for

all four combinations of estimators. Moreover, as in the case of the full-sample

analysis, the relative performance of the HAR-RV model in general strengthens

in the length of the forecast horizon. It is also interesting to observe that, in the

first subsample, the HAR-RV-S- model outperforms the HAR-RV model for C and

S (in case of the latter only for the rolling-estimation window) when we use the

Lasso-Lasso and the Ridge-Ridge estimators, where the good performance of the

HAR-RV-S model tends to strengthen in the length of the forecast horizon. Thus,

our results for the first subsample partially overlap (that is, for C and S) with the

results reported by Marfati et al. (2022), who report results for the sample pe-

riod 2013−2018 (and Chinese data, so it is clear that the results are not directly

comparable).

− Figures 15 and 16 about here. −

4.4 Extension to Energy Commodities and Precious Metals

It is interesting to study whether the out-of-sample results when we extend our

HAR-RV-S model for agricultural commodities to include other important com-

modities. In extending the model in this way, we can account for the potential

impact of spillover effects across different classes of commodities, as noted in

a number of stdies involving the agriculture, energy and precious metals mar-
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kets,2 on out-of-sample forecasting performance. In order to extend the HAR-

RV-S model in this way, we consider the RVs of several energy commodities

(natural gas: NG; heating oil: HO, and; coal: CL) and precious metals (gold: GC;

copper: HG; palladium: PA; platinum: PL, and; silver: SI). The data source is

the same as that described in detail in Section 2, so that we can directly match

by date the RVs of the agricultural commodities with those of the energy com-

modities and the precious metals. We plot the RVs of the energy commodities

and the precious metals at the end of the paper (Appendix; Figures A2 and A1),

where we also report the full-sample correlation matrix for the members of the

three commodity groups (Figure A3). We also plot the corresponding total dy-

namic spillover index (Figure A4), which shows that the spillover effects among

the three members of the three commodity groups have increased towards the

end of the sample period. As in the agricultural-commodities-only model, the

spillover effects are also visible in the full-sample RMSFE ratios (based on the

modified stacking algorithm; Figure A5). The RMSFE ratios clearly decrease in

the length of the forecast horizon, especially when we combine the shrinkage

estimators with regression trees. Finally, the results that we report in Figure

A6 (for a recursive-estimation window) and in Figure A7 (for a rolling-estimation

window) corroborate the main finding of our empirical research that the HAR-

RV-S model, with only few exceptions, does not outperform out-of-sample the

forecasting performance of the classic HAR-RV model, especially as the length of

the forecasting horizon increases.

2See, for example, Nazlioglu et al. (2013), Kang et al. (2017), Mensi et al. (2017), Ji et al.
(2018), Luo and Ji (2018), Chang et al. (2019), Lu et al. (2019), Dahl et al. (2020), Luo and
Zhang (2020), Yip et al. (2020).
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5 Concluding Remarks

Modeling and forecasting realized volatilities of financial asset prices in general

and of commodity price fluctuations in particular is of key importance for finan-

cial market participants and policymakers. Financial market participants rely

on accurate forecasts of realized volatilities when solving portfolio-optimization

problems and pricing of derivative securities. Policymakers, in turn, need ac-

curate forecasts of realized volatilities when designing policies to mitigate the

potential adverse effects of a rise in economic, and in case of agricultural com-

modities perhaps even political uncertainty, associated with sudden increases

in the volatility of price fluctuations. A natural and important research ques-

tion, therefore, is whether forecasts of the realized volatilities of commodity price

fluctuations can benefit when a forecaster takes into account spillover effects

across the realized volatilities of agricultural commodities. The results we have

reported in this research clearly demonstrate that such spillover effects exist,

that they can be strong, that they may vary over time, and that accounting for

spillover effects by means of a simple HAR-RV-S model has beneficial effects in

an in-sample analysis. We do not observe, however, systematic out-of-sample

forecasting gains relative to a classic HAR-RV model.

In order to obtain out-of-sample forecast the RVs of 15 agricultural commodi-

ties (and, in an extended model, three energy commodities and five precious met-

als), we have used various multi-task stacking algorithms as well as a multivari-

ate shrinkage estimator. The multi-task stacking algorithms in particular have

the advantage that it is straightforward to implement them in high dimensional

multi-task forecasting problems. Modeling and forecasting the realized volatili-
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ties of the various agricultural commodities that we have studied in this research

can be interpreted as belonging to this class of problems. While the multivariate

shrinkage estimator retains a simple linear structure of the forecasting model,

the multi-task stacking algorithm open up the possibility to combine different

base and meta learners, where for the latter we also have used regression trees

so as to explore potential nonlinear structures in the data. Irrespective of the

algorithm or combination of base and meta learners that we have studied, we

have obtained the same main finding that spillover effects do not leverage out-

of-sample forecast accuracy relative to the classic HAR-RV model. Our main

finding implies that the research strategy used by some researchers in recent

papers (see, for example, Bonato et al. (2022, 2024, forthcoming)) to forecast

RVs of agricultural commodities in an univariate modeling approach is likely to

be a good starting point for further analysis, and can be also considered bene-

ficial from the perspective of investors looking for optimal portfolio allocations,

and policymakers aiming to stabilize food prices.

This does not mean that a multivariate modeling approach cannot yield im-

portant additional and novel insights. In fact, in future research, it is interesting

to study whether other algorithms developed in the large and rapidly growing

machine-learning literature corroborate our main finding, or whether applica-

tion of other algorithms brings to the forefront features of the data that the al-

gorithms and estimators we have applied in our research have failed to detect.

In technical terms, it is also interesting to explore how the stacking algorithms

we have studied in this research can be combined with the type of multivariate

HAR-RV-cum-GARCH models discussed in the related earlier literature. Such

18



an extension also would render it possible to compare more directly the results

we have reported in this paper with the results that Marfatia et al. (2022) have

reported in their recent empirical study of a small set of agricultural commodi-

ties (and a shorter sample period, using Chinese data). Furthermore, against

the background of the much discussed financialization of commodity markets,

it is worthwhile to investigate whether accounting for spillover effects across

the realized volatilities of different asset classes (for example, agricultural com-

modities and stock markets) yields insights that help to improve the accuracy of

out-of-sample forecasts of realized volatilities (as in, for example, De Nicola et al.

(2016)).
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Figure 1: RV of Agricultural Commodities
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Figure 2: Full-Sample Correlation Matrix
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Figure 3: Full-Sample Estimated Coefficients (Baseline Stacking Algorithm)

The forecast horizons are h = 1, 5, 10, 20 (starting in the upper left panel).32



Figure 4: RMSFE Ratios for the Full Sample (Baseline Stacking Algorithm)
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RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 5: RMSFE Ratios for a Recursive Window (Baseline Stacking Algorithm)
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Figure 6: RMSFE Ratios for a Rolling Window (Baseline Stacking Algorithm)
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Figure 7: MAFE Ratios for a Recursive Window (Baseline Stacking Algorithm)
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Figure 8: RMSFE Ratios for a Recursive Window (Modified Stacking Algorithm)
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Figure 9: RMSFE Ratios for a Rolling Window (Modified Stacking Algorithm)
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RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model.
A RMSFE ratio smaller than unity indicates that the meta learner produces a smaller in-sample
RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 10: RMSFE Ratios for a Recursive Window (Multivariate Shrinkage Esti-
mator)
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RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model.
A RMSFE ratio smaller than unity indicates that the meta learner produces a smaller in-sample
RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 11: RMSFE Ratios for a Rolling Window (Multivariate Shrinkage Estima-
tor)
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RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model.
A RMSFE ratio smaller than unity indicates that the meta learner produces a smaller in-sample
RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 12: Quantile-Based RMSFE Ratios for a Recursive Window (Baseline
Stacking Algorithm)
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RMSFE ratios for different quantiles of the realizations of RV. RMSFE ratios for a comparison of
the HAR-RV-S model (meta learner) with the HAR-RV model. A RMSFE ratio smaller than unity
indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV model.
The forecast horizons are h = 1, 5, 10, 20.
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Figure 13: Quantile-Based RMSFE Ratios for a Rolling Window (Baseline Stack-
ing Algorithm)
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RMSFE ratios for different quantiles of the realizations of RV. RMSFE ratios for a comparison of
the HAR-RV-S model (meta learner) with the HAR-RV model. A RMSFE ratio smaller than unity
indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV model.
The forecast horizons are h = 1, 5, 10, 20.
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Figure 14: Rolling-Window Estimates of a Spillover Index
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The total dynamic spillover index is derived from a VAR(5) model estimated using a rolling-
estimation window of length 1,000 observations and a 10-step-ahead generalized forecast error
variance decomposition.
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Figure 15: Subsample Analysis for a Recursive Window (Modified Stacking Algo-
rithm)
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The panels on the left-hand side summarize the results for the first subsample. The panels on the
right-hand side summarize the results for the first subsample. The first subsample comprises the
first 450 out-of-sample forecasts. The second subsample obtains upon deleting the first 450 out-
of-sample forecasts. RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with
the HAR-RV model. A RMSFE ratio smaller than unity indicates that the meta learner produces
a smaller in-sample RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 16: Subsample Analysis for a Rolling Window (Modified Stacking Algo-
rithm)
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The panels on the left-hand side summarize the results for the first subsample. The panels on the
right-hand side summarize the results for the first subsample. The first subsample comprises the
first 450 out-of-sample forecasts. The second subsample obtains upon deleting the first 450 out-
of-sample forecasts. RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with
the HAR-RV model. A RMSFE ratio smaller than unity indicates that the meta learner produces
a smaller in-sample RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Appendix

Figure A1: RV of Energy Commodities
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Figure A2: RV of Precious Metals
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Figure A3: Full-Sample Correlation Matrix (Extended Sample of Commodities)
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Figure A4: Rolling-Window Estimates of a Spillover Index (Extended Sample of
Commodities
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The total dynamic spillover index is derived from a VAR(5) model estimated using a rolling-
estimation window of length 1,000 observations and a 10-step-ahead generalized forecast error
variance decomposition.

Figure A5: Full Sample RMSFE Ratios (Modified Stacking Estimator)
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RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model.
A RMSFE ratio smaller than unity indicates that the meta learner produces a smaller in-sample
RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Figure A6: RMSFE Ratios for a Recursive Window (Modified Stacking Estimator)
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RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model.
A RMSFE ratio smaller than unity indicates that the meta learner produces a smaller in-sample
RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.

Figure A7: RMSFE Ratios for a Rolling Window (Modified Stacking Estimator)
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RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model.
A RMSFE ratio smaller than unity indicates that the meta learner produces a smaller in-sample
RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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