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Abstract 
In this paper, we examine the potential spillovers between returns, volatility, skewness and kurtosis 
of developed stock markets under the lenses of rare disaster events, proxied by climate risks. The goal 
of this study is to depict the transmission mechanism of rare disaster events involving moments within 
and between advanced equity markets. In doing so, we provide estimates of the aforementioned 
moments based on model-implied distributions of stock returns, derived from the quantile 
autoregressive distributed lag mixed-frequency data sampling (QADL-MIDAS) method, using a long 
span of data. Our research framework includes the G7 and Switzerland over the period December 
1924 to February 2023, where we apply a multilayer approach to spillovers, adding the effect of 
climate risk to our analysis. Our empirical findings are as follows: firstly, spillovers are significant 
within- and across stock markets for each of the four moments. Secondly, based on a nonparametric 
causality-in-quantiles approach, changes in temperature anomalies, have the predictive power to 
shape the entire conditional distribution of various metrics of spillover involving single- and multiple-
layers of returns and risks layers. In sum, we show that the multi-layer approach offers a 
comprehensive and nuanced view of how stock market-related information is transmitted across the 
stock markets of advanced economies, carrying implications for investors and policymakers.  
Key words: Returns and risk spillovers; advanced equity markets; multi-layer spillover approach; 
nonparametric causality-in-quantiles method; climate risks; predictability. 
JEL Codes: C22, C32, C53, G15, Q54   
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1. Introduction 
Climate change-related extreme weather conditions, due to increased levels and variability of global 
temperature, poses a large aggregate risk to the stock markets, and the overall financial system in 
general (Del Fava et al., 2024), due to occurrences of rare disaster events impacting far out-in-the-
left-tail realizations of the underlying states of the economy (Giglio et al., 2021; Stroebel and 
Wurgler, 2021; van Benthem et al., 2022). Theoretically speaking, the key assumption underlying 
rare-disaster models used to explain this nexus is that, the entire universe of assets in an economy is 
exposed to an aggregate jump-risk factor (Rietz, 1988; Barro, 2006, 2009). It follows that, even 
though in the cross section, some assets are more exposed to such a tail events than others, a jump-
risk factor should be an important driver of the time-series variation in the various moments of 
individual asset prices, as detected recently in the context of the international stock markets by, for 
example, Choi et al. (2020), Balcilar et al. (2023), Bonato et al. (2023) Salisu et al. (2023a), due to 
reduction in productivity and/or the increase in the stochastic depreciation rate of capital to produce 
adverse impact on equity valuations (Donadelli, 2017, 2021a, b, 2022).  
Against this theoretical backdrop, one can hypothesize that the jump-risk factor associated with global 
warming, involving changes in temperature anomalies and its volatility, is likely to cause the spillover 
of not only the non-normal returns and volatility, but also skewness and kurtosis of the interconnected 
international stock markets (see, among others, the detailed discussions in Bouri et al. (2021, 2023), 
Bouri (2023), and Ahmed et al. (2024) in this regard). In this regard, recall that, there are primarily 
two channels, namely real (trade) linkages and information involving market characteristics, which 
connects the financial sectors of the world economies (Debarsy et al., 2018). With adverse global 
shocks associated with weather-related risks impacting both these channels, it is not far-fetched to 
propose our above-mentioned hypothesis.  
To econometrically test our hypothesis, we obtain measures of volatility, skewness and kurtosis from 
monthly log-returns of stock indexes for eight advanced economies, namely Canada, France, 
Germany, Italy, Japan, Switzerland, the United Kingdom (UK), and the United States (US) based on 
a century of historical data (December 1924-February 2023), using the quantile autoregressive 
distributed lag mixed-frequency data sampling (QADL-MIDAS) method (Ghysels et al., 2018). We 
must emphasize that, besides the availability of the longest possible samples of stock market data to 
avoid possible sample-selection-bias, the choice of the aforementioned equity markets is primarily 
motivated by their importance to the global economy, since they represent nearly the two-thirds of 
the global net wealth, and nearly half of the world output. Hence, a spillover analysis would be of 
pivotal importance from the perspective of the stability to the world financial system (Das et al., 2019; 
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Salisu et al., 2023b). Furthermore, as pointed out by Ghysels et al. (2018), the QADL-MIDAS model 
mixes low and high frequency data and outperforms standard autoregressive conditional 
heteroskedasticity (ARCH), generalized ARCH (GARCH) and quantile autoregressive (QAR) 
approaches in extracting risk measures. Thus, our reliance on the QADL-MIDAS model, rather than 
the QAR, to obtain the higher-order moments from the stock returns. 
After compiling moments for each market, we analyze the connectedness of returns, volatility, 
skewness and kurtosis for the eight stock markets not only within the a specific-layer of the moment 
(as traditionally done in the literature; see, Diebold and Yilmaz (2009), BenSaïda (2019) and Choi 
and Yoon (2023) for reviews), but also but also across the four moments using the multi-layer 
approach of Wang et al. (2021), which can fully capture all possible information spillover effects 
between returns, volatility, skewness and kurtosis (Foglia et al., 2023). As pointed out by Wang et al. 
(2021), while proposing the econometric methodology of multi-layer connectedness, the complexity 
of the financial system makes spillover analyses based on a single-layer network involving multiple 
countries a sub-optimal choice, because a single measure of the financial market performance cannot 
capture the diversity and heterogeneity of information transmission and its interconnectedness among 
markets. Thus, it is necessary to use multilayer networks, which consider heterogeneous information 
and the multilayer structure of a complex system involving asset market moments, to understand the 
interaction behaviour in global stock markets. Multilayer networks, where links in each layer 
represent different types of connections among the same set of nodes (the eight advanced equity 
markets in our case), can combine various interconnectedness measures together to describe complex 
financial systems effectively across returns and alternative metrics of risks simultaneously. 
Accordingly, we use a model of multilayer information spillover networks as an extension of the 
original work based on a single-layer by Diebold and Yilmaz (2012, 2014), including a returns, 
volatility, skewness and kurtosis spillover layers, to comprehensively investigate the 
interconnectedness of developed stock markets. Due to the importance of returns and risk spillover 
analysis from the perspective of portfolio allocation and risk management (Ji et al., 2020; Gong et al., 
2023; Iqbal et al., 2024), this multi-layer approach should be of paramount importance to investors, 
allowing them to get a complete understanding of the interconnectedness of moments across 
developed stock markets.  
Finally, we utilize a nonparametric causality-in-quantiles framework of Jeong et al. (2012), to relate 
the predictability of changes in global temperature anomalies and its volatility, with the latter also 
derived from the QADL-MIDAS model, for the various metrics of single- and multi-layer 
connectedness within and across the moments, respectively. This test has the key advantage that it 
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enables us to detect predictability across the entire conditional distribution of the connectedness 
measures, resulting from climate risks, while simultaneously controlling in a data-driven manner for 
possible misspecification due to nonlinearity usually associated with relationships involving financial 
data spanning long periods of time. Note that, a quantiles-based nonparametric predictive approach, 
rather than conditional mean-based methods (as in, for example, Diks and Panchenko (2005, 2006)), 
ensures that we do not end up missing possible causal influence at certain parts of the conditional 
distribution of the indexes of connectedness.  
The contributions of our study are in multiple fronts, being the first of its kind to: (a) estimate robust 
metrics of volatility, skewness and kurtosis using QADL-MIDAS models involving over a century 
of data, which, in turn, is the longest available, on the evolution of returns of important stock markets 
thus controlling for possible sample-dependent bias arising from the choice of specific sample 
periods; (b) provide an analysis of multi-layer spillovers across returns, volatility, skewness and 
kurtosis of eight major stock markets, rather than taking a single-strand approach as is traditional in 
the existing literature, thereby providing a more complete understanding of spillover across 
alternative metrics of stock market performance; and (c) evaluate the predictability of the entire 
conditional distribution of spillover measures using a nonparametric causality-in-quantiles 
framework based on the information content of proxies of climate risks, which are well-established 
drivers of the variability of asset market movements, with the predictions likely to be invaluable for 
investors to gauging the future risk profile of equity markets, and hence, assist in optimal portfolio 
allocation in the face of global adverse shocks. 
The remainder of the paper is organized as follows: Section 2 discusses the data. Section 3 lays out 
the QADL-MIDAS, multi-layer connectedness, and nonparametric causality-in-quantiles models. 
Section 4 presents the results of the multi-layer connectedness analysis and the associated predictive 
exercise in relation to the changes in global temperature anomalies and its volatility. Finally, Section 
5 concludes. 
2. Data 
The log-returns of stock market indexes used in this study cover an extensive period, spanning the 
period December 1924 to February 2023 at a monthly frequency and are obtained from the Global 
Financial Database1. This extended time-series dataset allows us to analyse and capture various 
historical events, including major financial and economic crises, such as the 1929 US financial crash, 
the 1973 OPEC oil crisis, the Asian crisis of 1997-1998, the global financial crisis of 2008, the 2009 
                                                             
1 https://globalfinancialdata.com/. 
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European sovereign debt crisis, the COVID-19 pandemic of 2020, and the recent Russian-Ukrainian 
conflict. These extreme events have significantly impacted financial markets, increasing market 
volatility and making the description of the risks-returns transmission analysis a central research 
issue. The dataset consists of the market indices of eight advanced economies, which include the G7: 
Canada (CA; S&P TSX 300 Composite Index), France (FR; CAC All-Tradable Index), Germany 
(DE; CDAX Composite Index), Italy (IT; Banca Commerciale Italiana Index), Japan (JP; Nikkei 225 
Index), the United Kingdom (UK; FTSE All Share Index), the United States (US; S&P500 Index) 
and Switzerland (CH; All Share Stock Index). 
As far as climate risks are concerned, global land and ocean temperature anomalies (relative to 1901-
2000) over the corresponding period, derived from the National Oceanic and Atmospheric 
Administration of the National Centers for Environmental Information2. We compute year-on-year 
changes in the median world temperature anomalies to ensure that we avoid seasonal patterns in the 
data. The QADL-MIDAS, discussed in detail in the next section, is fitted to log-returns to obtain our 
measures of volatility, skewness and kurtosis, while the same model is used to obtain the 
corresponding volatility of year-on-year changes in temperature anomalies. 
Table 1 shows the list of financial markets and summary statistics of our stock returns data, with the 
non-Gaussian distributions, as confirmed by the Jarque-Bera (JB) test-statistic, confirming the need 
to look beyond the first moment, while analysing spillovers.  
Table 1: Summary statistics   Mean Variance Skewness Ex.Kurtosis JB 

Stock Returns (RET)      
CA 0.422 21.643 -1.152 5.960 2003.998*** 
FR 0.598 30.527 -0.242 1.824 174.722*** 
DE 0.504 25.24 -0.397 4.270 926.035*** 
IT 0.519 50.818 0.807 5.794 1775.359*** 
JP 0.583 36.205 0.566 7.298 2676.796*** 
UK 0.419 21.932 -0.256 9.299 4256.988*** 
US 0.511 19.667 -0.600 12.051 7199.268*** 
CH 0.363 18.743 -0.541 5.328 1450.698*** 

Note: The Table shows the summary statistics for log-returns.  The Jarque–Bera (JB) statistic tests the null hypothesis of 
normal distribution. *** indicates rejection of the null hypothesis at the 1% level of significance. 
 
 
 

                                                             
2 https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series. 
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3. Methodology  
To estimate the multilayer information spillover network between stock market returns (RET), inter-
quartile range (IQR) capturing volatility, skewness (SKEW) and kurtosis (KURT), we applied the 
model proposed in Wang et al. (2021). Based on a Granger causality test, the approach is able to 
capture the static and dynamic spillover effect on a multilayer network. The empirical design is 
carried out in five steps. Firstly, we employ the QADL-MIDAS to extract the relevant stock market 
measures, namely our four layers of the network. Secondly, we compute the informational spillover 
effect. Thirdly, we build the multilayer network, and fourthly, we calculate the single and multi-layer 
network measures. Finally, the nonparametric causality-in-quantiles model is used to predict the 
entire conditional distribution of the various metrics of within and across layer connectedness due to 
climate risks. 

3.1. QADL-MIDAS model 

In order to extract stock market risk measures, we are interested in modelling the ߬-th quantile of h-
step ahead series (݅௧ା௛(௛) ) using the information at time t (ℱ௧), by relying on the QADL-MIDAS model. 
The conditional quantile ߬ of h-step ahead will be given by:  

ఛ,௧ା௛(݅௧ା௛(௛)ݍ ) = ℱ௧ା௛|௧ିଵ (݅(௛))                                           (1) 

Starting from the typical QAR model, assuming a 1-step ahead prediction to simplify notation, the 
quantile dependent AR coefficients are given by equation: 

ఛ(݅௧ାଵ|ℱ௧)ݍ = ఛߤ + ఛ݅௧ߩ + ∑ ఛ,௝∆݅௧ି௝௤ିଵ௝ୀ଴ߚ                                (2) 

where ߤ is the intercept, ߩ = ∑ ௝ܽ௤௝ୀ଴  captures stock index persistence, ߙ represents coefficients form 
a simple AR model of the stock index, q is the number of lags of the model, ߚ is the autoregressive 
coefficient to be estimated, and ߬ ∈ (0,1) is the quantile level. Extending the QAR model to h-step 
ahead forecasting, the horizon is h months while the information remains monthly. Thus, the model 
becomes: 

ఛ(݅௧ାଵ|ℱ௧)ݍ = ఛߤ + ఛ݅௧ߩ +  (3)                                   (ఛߠ)ఛܼ௧ߚ

given    ܼ௧(ߠఛ) = ∑ ௝߱(ߠఛ)௤ିଵ௝ୀ଴ ห∆݅௧ି௝ห,   ௝߱ = (ଵି௫ೕ)ഇ
∑ (ଵି௫ೕ)ഇ೜షభೕసబ

 and ݔ௝ = ௜ିଵ
௛ିଵ 
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In this specification, the model can avoid over-fitting using a large number of lags and is able to 
specify coefficients at any given sampling frequency (i.e. quarterly) while keeping sampling at the 
monthly frequency. After estimating the QADL-MIDAS coefficients, we extract model-implied risk 
measures, where volatility (IQR) is simply the difference between the upper and lower-tail quantiles 
at the ߬= 0.10 level:  

௧|௧ି௛ఛܴܳܫ = ොଵିఛ,௧|௧ି௛ݍ −  ොఛ,௧|௧ି௛                                           (4)ݍ

and skewness (SKEW) measures the asymmetry of the distribution of future realizations as the 
deviation of the upper and lower tail quantiles from the median, standardized by IQR. At the ߬ = 0.10 
level: 

ܧܭܵ ௧ܹ|௧ି௛ఛ = ൫௤ොభషഓ,೟|೟ష೓ି௤ොబ.ఱబ,೟|೟ష೓൯ି(௤ොబ.ఱబ,೟|೟ష೓ି௤ොഓ,೟|೟ష೓)
௤ොభషഓ,೟|೟ష೓ି௤ොഓ,೟|೟ష೓                          (5) 

When the distribution is symmetric, the two distances are similar and skewness is zero, while when 
ොଵିఛ,௧|௧ି௛ݍ −  ො଴.ହ଴,௧|௧ି௛ is larger (smaller) the distribution is skewed to the right (left). Theݍ
standardization makes the measure unit-free and between -1 and 1.  Finally, kurtosis (KURT) as a 
measure of the existence of outliers in the dataset, at ߬ = 0.01, can be estimated as: 

ܴܷܭ  ௧ܶ|௧ି௛ఛ = ൫௤ොభషഓ,೟|೟ష೓ି௤ොഓ|೟ష೓൯
௤ොబ.ళఱ,೟|೟ష೓ି௤ොబ.మఱ,೟|೟ష೓                                      (6) 

Note that, the volatility of the year-on-year changes in temperature anomalies are also derived using 
the IQR, specified in equation (4). 

3.2. Multi-layer connectedness 

We now turn our attention to the methodological background of multi-layer connectedness in a step-
by-step manner. First, we estimate the information spillover and build the multilayer network. 
Second, we compute the connectedness measures from a single- and multilayer network perspective. 

3.2.1. Spillover and network framework  
The multilayer information spillover network is computing following Wang et al. (2021), i.e., based 
on a Granger causality test in mean. To compute the spillover from financial market 2 to financial 
market 1 (and vice versa), we test the following null hypotheses:  
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ቊܪ଴: ܧ൫ܴܧ ଵܶ,௧หܫଵ,௧ିଵ൯ = ܧ൫ܴܧ ଵܶ,௧หܫ௧ିଵ൯
:஺ܪ ܧ൫ܴܧ ଵܶ,௧หܫଵ,௧ିଵ൯ ≠ ܧ൫ܴܧ ଵܶ,௧หܫ௧ିଵ൯,                               

ቊܪ଴: ଵ,௧ିଵ൯ܫ൫IQRଵ,௧หܧ = ௧ିଵ൯ܫ൫IQRଵ,௧หܧ
:஺ܪ ଵ,௧ିଵ൯ܫ൫IQRଵ,௧หܧ ≠  ,௧ିଵ൯ܫ൫IQRଵ,௧หܧ

                                             ቊܪ଴: ଵ,௧ିଵ൯ܫ൫SKEWଵ,௧หܧ = ௧ିଵ൯ܫ൫SKEWଵ,௧หܧ
:஺ܪ ଵ,௧ିଵ൯ܫ൫SKEWଵ,௧หܧ ≠  ௧ିଵ൯,                                      (7)ܫ൫SKEWଵ,௧หܧ

ቊ :଴ܪ ଵ,௧ିଵ൯ܫ൫KURTหܧ = ௧ିଵ൯ܫ൫KURTଵ,௧หܧ
:஺ܪ ଵ,௧ିଵ൯ܫ൫KURTଵ,௧หܧ ≠  ,௧ିଵ൯ܫ൫KURTଵ,௧หܧ

where RET, IQR, SKEW and KURT refer to the measures of financial stock market performance, 
while ܫ௧ିଵ is the information set. If the null hypothesis of the Granger causality in mean is true, it 
implies that there is no spillover effect from the financial market 2 to market 1 at a given significance 
level (in our case, = 0:05). On the contrary, there is a spillover effect from the financial market 2 to 
market 1.  
Following Hong et al., (2009), we built a Q statistic, to merge the information spillover in a unified 
framework as follows:  
                                            ܳ = ܶ ∑ ൣ݇ଶ(݆/ܯ)/ߩଶ෢(݆) − ൧்ିଵ௝ୀଵ(ܯ)்ܥ /൫2(ܯ)்ܦ൯ଵ/ଶ                       (8) 
where (ܯ)்ܥ and (ܯ)்ܦ stand for the centering and standardization constants, respectively, M 
denotes the effective lag truncation order and ݇(⋅) is the Daniel kernel function as suggested by Hong 
et al. (2009).  

3.2.2. The multi-layer network framework  
Following Wang et al., (2021), we define the multilayer information spillover network as Ω =
൛ܩሾଵሿ, ,ሾଶሿܩ … , ሾఈሿܩ .ሾ௅ሿ}, with N nodes and L layersܩ = ,൫ܸܩ  ሾఈሿ൯ is layer α of the multilayerܣ
information spillover network, ܸ = {1,2, … , ܰ}   is a set of nodes, while ܣሾఈሿ is a set of edges on layer 
 ,The multilayer network is composed by four layers (L = 4), namely stock returns, IQR volatility .ߙ
skewness index and kurtosis measure, respectively. The binary connection matrix is defined as  
ሾఈሿܣ                                                                   = ܽ௜,௝ሾఈሿ

ே×ே                                                              (9) 

where   ܽ௜,௝ሾఈሿ = ൜1,   if i ≠  j  and i has a corresponding spillover effect on j on layer a
0,   otherwise                   
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Thus, the multilayer information spillover network is a 4-dimensional ܰ × ܰ adjacency matrix.  In 
order, to investigate the dynamic features of a multilayer information network, we approach the 
sample interval using rolling windows estimation. Following Balcilar and Usman (2021) we use a 
60-month (5-year) rolling sample on 12-step horizons. 

3.2.3. Network measures 
To analyse the network’s topological features, we calculate three connectivity measures. In particular, 
we compute the single-layer index (the degree index) and two multilayer indexes, the overlap measure 
and the participation coefficient. 

3.2.4. Single-layer measure: the degree index  
This measure captures the number of edges on the layer, i.e., the higher the degree of a layer, the 
closer the connection between the layer variables. We can define the degree index as:  
                                                             ܽሾఈሿ = ∑ ܽ௜௝ሾఈሿே௜,௝ୀଵ;௜ஷ௝                                                             (10) 

where ܽ௜௝ሾఈሿ is the edge from financial market i to financial market j on layer ߙ. 
3.2.5. Multi-layer measures: overlap index 

The overlap index, as defined by Musmeci et al. (2017), quantifies the number of overlaps associated 
with each edge (financial markets) within our network. This metric provides insights into the 
similarity and homogeneity of edge structures across each layer, delineated by the respective layers 
they represent - stock market returns (RET), inter-quartile range (IQR) volatility, skewness (SKEW) 
and kurtosis (KURT).  The overlap index is defined as follows: 
                                           ܱ = ଵ

௄ ∑ ∑ ∑ ܽ௜௝ሾఈሿ௅௔ୀଵே௝ୀଵ,௜ஷ௝ே௜ୀଵ                                                    (11) 
To identify the markets exerting significant influence on spillover transmission, we compute the 
degree of overlap, identifying central nodes within the network, hence:  
௜݋                                                = ∑ ∑ ∑ ܽ௜௝ሾఈሿே௝ୀଵ,௜ஷ௝ே௜ୀଵ௅௔ୀଵ                                                       (12) 
With our network comprising four layers, the overlap index ranges from 1 to 4, reflecting the extent 
of connectivity among financial markets. In other words, it measures the similarity (homogeneity) of 
the edge structures of each layer. The degree of overlap defines the total number of overlaps between 
layers to which financial markets belong. A value near 1 signifies that an edge exists solely within 
one layer, whereas a value nearing 4 indicates a high degree of similarity in connectivity across layers. 
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3.2.6. Multi-layer measures: participation coefficient measure 
We calculate the participation coefficient index to gauge the node distribution across layers. This 
index, ranging from 0 to 1, delineates the extent to which a financial market serves as a hub within 
one layer relative to others. A value close to zero suggests that the node’s connections are 
predominantly confined to one layer, while a value near 1 indicates a more uniform distribution of 
connections across layers. Higher coefficient values signify a greater uniformity in the direct 
connections between network layers. The participation coefficient is given by:  

                                           ௜ܲ = ௅
௅ିଵ ቈ1 − ∑ ൬௞೔ሾഀሿ

௢೔ ൰
ଶ

௅௔ୀଵ ቉                                              (13) 

where ݇௜ሾఈሿ is the degree of node i on layer ߙ.  
3.3. Nonparametric causality-in-quantiles test 

In this sub-section, we briefly present the methodology for testing nonlinear causality based on the 
framework of Jeong et al. (2012). Let ݕ௧ denote the specific spillover measure and ݔ௧ either the year-
on-year changes in temperature anomalies or its IQR-based volatility, which we call climate risks 1 
or climate risks 2, i.e., CR1 or CR2. Further, let ௧ܻିଵ ≡ ,௧ିଵݕ) … , ௧ି௣), ܺ௧ିଵݕ ≡ ,௧ିଵݔ) … ,   ,(௧ି௣ݔ
ܼ௧ = (ܺ௧ , ௧ܻ), and ܨ௬೟|∙(ݕ௧| •) denote the conditional distribution of ݕ௧ given •.  Defining ܳఏ(ܼ௧ିଵ) ≡
ܳఏ(ݕ௧|ܼ௧ିଵ) and ܳఏ( ௧ܻିଵ) ≡ ܳఏ(ݕ௧| ௧ܻିଵ), we have  ܨ௬೟|௓೟షభ{ܳఏ(ܼ௧ିଵ)|ܼ௧ିଵ} =  with probability  ߠ
one. The (non)causality in the θ-th quantile hypotheses to be tested are: 

)௬೟|௓೟షభ{ܳఏܨ଴:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ = 1                                                                                     (14)  
)௬೟|௓೟షభ{ܳఏܨଵ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ < 1                                                                                      (15)  

Jeong et al. (2012) show that the feasible kernel-based (standard normal) test statistic has the 
following format: 

መ்ܬ                = 1
ܶ(ܶ − 1)ℎଶ௣ ෍ ෍ ܭ ൬ܼ௧ିଵ − ܼ௦ିଵ

ℎ ൰  ௦̂ߝ௧̂ߝ
்

௦ୀ௣ାଵ,௦ஷ௧
                      

்

௧ୀ௣ାଵ
                        (16)  

where ܭ(•) is the kernel function with bandwidth ℎ, ܶ is the sample size, ݌ is the lag order, and ߝ௧̂ =
૚{ݕ௧ ≤ ෠ܳఏ( ௧ܻିଵ)} − )is the regression error, where ෠ܳఏ ߠ ௧ܻିଵ) is an estimate of the ߠ-th conditional 
quantile and ૚{•} is the indicator function. The Nadarya-Watson kernel estimator of ෠ܳఏ( ௧ܻିଵ) is 
given by 

෠ܳఏ( ௧ܻିଵ) = ∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ  ૚{ݕ௦ ≤ ௧}௦்ୀ௣ାଵ,௦ஷ௧ݕ
∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ௦்ୀ௣ାଵ,௦ஷ௧

                                                                   (17)  
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with ܮ(•) denoting the kernel function.  
The empirical implementation of causality testing via quantiles entails specifying three key 
parameters: the bandwidth (h), the lag order (p), and the kernel types for ܭ(∙) and ܮ(∙). We use a lag 
order of one based on the Schwarz Information Criterion (SIC). We determine ℎ by the leave-one-
out least-squares cross validation. Finally, for ܭ(∙) and  ܮ(∙), we use Gaussian kernels. 
 

4. Empirical findings   
In this section, we will first present the discussion of the multi-layer spillover and then relate the 
alternative measures of within and across layer connectedness involving returns, volatility, skewness 
and kurtosis with climate risks via a nonparametric causality-in-quantiles framework. 

4.1. Global-level investigation  
Examining the dynamics of global connection degree offers important insights into the behaviour of 
layers, shedding light on the topological characteristics of the four layers under examination. In 
Figure 1, we plot the dynamic evolution of global connection density degrees across stock market 
returns (RET), inter-quartile range (IQR) volatility, skewness (SKEW), and kurtosis (KURT) from 
1929 to 2023.   
Several important findings emerge from Figure 1, and Table 2. First, we can see how the measures 
capture different dimensions of financial market connectedness. For example, we can note 
significantly higher degree values in the returns layer (RET). This suggests a heightened degree of 
connectivity among financial markets concerning stock returns. On the other hand, the SKEW layer 
manifests lower levels of connectedness, indicating lesser connectivity of markets during low-
probability events. The differing levels of connectedness in these layers suggest distinct market 
responses to varying types of risk, as highlighted in the literature (Finta et al., 2020; Bouri et al., 
2021). In fact, we can note that financial markets exhibit significant integration in the IQR volatility 
and kurtosis layers.  
Second, graphic evidence shows that spillovers vary over time and respond to crisis events differently 
depending on the layer considered.  
The trend in the RET layer highlights several crucial phases in global economic and geopolitical 
history. Each peak reflects significant events that impacted global markets and shaped the dynamics 
of financial and investment markets. The first peak shows the 1929 crisis. This crisis witnessed 
plummeting stock prices, widespread bank failures, and high unemployment (Galbraith, 2009). This 
period marked the onset of a prolonged global recession with severe consequences for financial 
markets and investor confidence. The second peak, in the 1950s and 1960s, coincides with the 
escalation of the Cold War and the Korean War. These geopolitical events increased international 
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tensions and significantly impacted financial markets (Ohaninan, 1997). The third peak shows the 
1973-1974 oil crisis. In this period, there was a surge in oil prices and the emergence of stagflation. 
This posed significant challenges for global financial markets, leading to declining stock prices and 
influencing both inflation and economic growth. The fourth peak, in 1990, coincides with the 
geopolitical risk turmoil due to the Gulf War (1990-91). The fifth peak, during the dot-com bubble’s 
collapse in the early 2000s, highlighted the risks of excessive speculation in financial markets, which 
resulted in significant losses for investors (Basse et al., 2021). The sixth peak coincides with the 
global financial crisis 2008 and the subsequent European sovereign debt crisis, reflecting the ensuing 
economic and financial turmoil. Finally, the COVID-19 pandemic (2020) is another recent event with 
a significant impact on the RET layer. 
While the RET layer provides significant insights into broad historical trends, the IQR layer offers a 
more granular perspective on financial market dynamics during pivotal events. By delving into the 
IQR layer, we can gain a deeper understanding of how markets respond to economic and financial 
crises, as well as systemic risks. A prime example is the period surrounding World War II (1939-
1945). The IQR layer effectively captures the substantial fluctuations in stock markets worldwide.  
The geopolitical tensions associated with the war and its aftermath significantly impacted investor 
uncertainty, leading to volatile stock prices. This case underlines the significant impact of geopolitical 
events on financial markets, which the IQR layer captures with greater detail compared to the RET 
layer. For example, the Global Financial Crisis (2007-2009) and the European Debt Crisis (2010-
2014) exposed deep-seated vulnerabilities in the financial system, leading to unprecedented market 
turmoil. The IQR layer excels at capturing this period of heightened volatility and uncertainty. The 
collapse of major financial institutions, the housing market crash, and the proliferation of toxic assets 
are all reflected in the broader range of market movements captured by the IQR layer. Additionally, 
complex financial products like mortgage-backed securities and credit default swaps amplified 
market volatility and systemic risks, further emphasizing the value of the IQR layer in revealing such 
dynamics. Finally, the IQR layer remains relevant in the contemporary context. Heightened 
geopolitical tensions, such as the ongoing Russia-Ukraine conflict, have significant implications for 
financial markets. The IQR layer reflects increased market volatility and risk aversion driven by these 
conflicts. 
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Figure 1: Degree connectedness for each layer  

 
Table 2: Summary statistics of degree of connectedness index 

Layer Mean S.D. Min Max 
RET 21.4 7.88 1.000 44.0 
IQR 17.5 6.23 3.00 37.0 
SKEW 18.0 3.60 9.00 31.0 
KURT 19.3 6.26 0.000 42.0 

Note: S.D. stands for standard deviation; Min and Max corresponds to minimum and maximum, respectively. 
 
While the IQR volatility spillovers offer a valuable starting point, analysing spillovers in the SKEW 
and KURT layers can help gain a deeper understanding of financial market dynamics. These layers 
help to reveal how extreme events and market anomalies influence market behaviour over time. 
Unlike volatility, skewness spillovers exhibit a smoother pattern, reflecting subtle shifts in market 
sentiment and risk preferences. It is interesting to note that connections within the IQR volatility layer 
are consistently prevalent compared to the skewness (SKEW) layer across different periods. This 
suggests a heightened degree of interconnectedness among financial markets concerning volatility 
risk relative to low-probability event risks. The IQR layer consistently exhibits greater connectivity, 
reflecting the significant transmission of volatility-related information and risk across markets during 
both normal and crisis periods. These results corroborate the analysis of He and Hamore (2021). The 
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authors investigate the volatility and skewness spillovers for four developed markets (the United 
States, the United Kingdom, Japan, and Hong Kong) and four emerging markets (Mainland China, 
South Korea, Thailand, and India) from 1995-2019. Their results show how the total skewness 
spillover is far smaller than the total volatility.  
In contrast, the KURT layer exhibits distinct peaks associated with historical events and financial 
market crises. These peaks coincide with pivotal moments like the Cold War, the Korean War, Black 
Monday (1987), the Asian Financial Crisis (1997-1998), and the Argentine great depression (1998-
2002). Each event represents a period of heightened uncertainty, systemic risk, and extreme market 
conditions reflected in elevated kurtosis spillovers. For example, Black Monday’s sudden and severe 
crash generated significant market dislocation, reflected in the peak kurtosis spillover, highlighting 
the event’s extreme nature. The Asian Financial Crisis and the Argentine great depression expose 
vulnerabilities in emerging markets and the potential for contagion across global financial systems. 
Peaks in kurtosis spillovers during these crises reflect the heightened tail risk and extreme market 
conditions, underlining the systemic implications of financial instability. 
Overall, the analysis at the layer level underscores the importance of adopting a multidimensional 
approach to information spillover assessment, considering various financial market layer components 
and their respective impacts on market dynamics. The results show the interrelationship of return and 
risk indicators across markets, particularly during significant crisis events. Hence, distinguish 
spillover indices at each layer serve as a crucial tool for monitoring and understanding market 
conditions and risk dynamics (Bouri et al., 2021). For example, as we can observe, focusing solely 
on the connectivity dynamics of returns may overlook valuable information. Each layer captures 
different dimensions of information that, when considered together, can lead to a deeper 
understanding of spillover effects across financial markets. 

 
Figure 2: The evolution of overlap index 
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In Figure 2, we report the dynamic average edge overlap within multilayer information spillover 
networks. The index exhibits variations, with values ranging from 1.5 to 2.7, with a mean close to 2. 
This indicates that each layer offers crucial and complementary information, facilitating a more 
comprehensive understanding of information spillover transmission between markets. This 
significant overlap between layers signifies that no single layer holds all the crucial information. 
Instead, each layer captures distinct aspects of information flow, encompassing factors like volatility, 
skewness, and kurtosis. Hence, the finding underscores the complementary nature of the information 
provided by each layer. By considering all layers together, we can achieve a more comprehensive 
understanding of how information spills over between financial markets. In fact, an edge in multilayer 
information spillover networks always appears in less than four layers. It is interesting to note that 
the behaviour of the index mirrors market conditions, with an increase during financial turmoil 
signifying heightened overlap and interaction among layers and a decrease during stability indicating 
reduced overlap and interaction.  
To further understand the multilayer network features, we follow Wang et al., (2023), and analyse 
cross-layer spillover measurements to gain insight into within network influence. Figure 3 depicts the 
cross-spillover layer measures. As we observe, spillovers are transmitted within the same layer. 
Across all four layers, cross-spillover dynamics within the same layer range from 60% to 80%. This 
suggests a significant level of internal transmission within each layer, indicating that spillovers tend 
to propagate primarily within their respective layers. 
However, upon closer examination, we observe variations in the composition of cross-spillover 
dynamics across layers. For instance, the analysis highlights notable differences in spillover patterns 
between the return and other layers. Specifically, we observe that spillovers from the return layer 
(RET), particularly into the inter-quartile range (IQR) volatility layer, range from 20% to 30%. This 
finding suggests a strong and consistent link between the return layer (RET) and the IQR volatility 
layer, indicating that movements in stock returns considerably impact volatility dynamics within the 
financial markets (Guo and Whitelaw, 2006).  
Moreover, we observe distinct patterns of spillovers between the skewness (SKEW) and the kurtosis 
(KURT) layers. The figure shows that the SKEW layer exhibits approximately 20-25% spillovers 
into the KURT layer and vice versa. This reciprocal spillover relationship suggests a close 
interconnection between the 2 layers, indicating that changes in skewness (i.e., asymmetry of return 
distributions) can influence kurtosis (i.e., the fatness of tails) and vice versa. 
By examining cross-layer spillover dynamics over different time periods, we can unveil the evolution 
of interconnectivity between layers in response to changing market conditions and external events 
(such as financial and economic crises). The patterns of cross-layer spillovers highlight the complex 
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nature of spillover transmission and the importance of considering multiple layers of information to 
gain a comprehensive understanding market dynamics. 

 

 
Figure 3: The dynamic of cross-spillover 

 
4.2. Financial markets overview 

In this sub-section, we investigate each financial market’s role in the spillover information dynamics 
according to the four layers. For this purpose, we calculate two multilayer network measure, i.e., the 
overlapping and participation coefficient indexes, as plotted in Figure 4.  
The dynamic fluctuations in the overlap degree offer evidence of the evolving roles played by 
individual markets across different economic periods, potentially reflecting the influence of distinct 
financial and macroeconomic conditions. The colour scale ranges from lighter colour, indicating 
values close to zero, to darker, representing high values of the degree index. The overlapping 
dynamics track major events occurring during this period, which were historically triggered by 
significant economic events, recessions, financial crises, and health crises. The indices underscore 
the highly interconnected nature of the global financial system, where shocks in one part of the world 
can swiftly propagate to affect markets globally. In fact, during periods of heightened economic 
uncertainty or crisis, we observe darker shades indicating increased overlap, signifying a convergence 
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of risk transmission channels across countries. This convergence underscores the interconnectedness 
of financial markets, where shocks in one countries can swiftly propagate to affect others, amplifying 
systemic risks. 
These high levels of financial market overlap may stem from two reasons: (i) the strong 
interconnection of countries within a specific layer, and; (ii) the overlapping effect of each layer. We 
can note how the US consistently exhibits the highest level of overlap degree measure. This aligns 
with its central role in influencing global risk levels due to its centrality within the international 
financial system. Given its economic significance and extensive network of financial linkages, 
developments in the US economy often reverberate across global markets, influencing risk 
perceptions and investor behaviour worldwide (Finta et al., 2020; Gong et al., 2023). 
The right-side of Figure 4 reports the participation coefficient. According to this, we can further 
investigate the distribution of connections between financial markets across layers. The multiple 
participation coefficient, which ranges from 0 to 1, reflects the level of spillover connection among 
the network’s layers. A coefficient of 0 indicates that the direct spillover connection of the considered 
financial market exists only in one of the four layers, while a coefficient of 1 suggests a more evenly 
distributed spillover connection across all four layers. During times of stability, we observe more 
uniform distributions, indicating balanced spillover connections across different layers. However, 
during periods of heightened financial stress, such as economic downturns or financial crises, 
participation coefficients tend to converge towards unity, reflecting a more concentrated and 
interconnected network of spillover channels. Analysing financial markets through a multilayer 
network lens is crucial. By considering the interconnectedness between different information 
channels (return, volatility, skewness and kurtosis), we can avoid underestimating the potential for 
spillover amplification during periods of stability. This comprehensive understanding is essential for 
safeguarding the global economic and financial system. 

 
Figure 4: Multilayer information spillovers measures 
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4.3. Predictability of spillover measures due to climate risks 
Having depicted the evidence that there is not only significant within- but across-layer spillovers 
involving returns, volatility, skewness and kurtosis of the eight advanced equity markets, we now 
evaluate if climate risks can predict the entire conditional distribution of the spillovers using a 
quantiles-based nonparametric causality test. As we consider the entire conditional distribution, we 
are able to identify the state or regime characterizing the degree of the spillover that is caused by 
climate risks, and hence provide invaluable information for investors in terms of portfolio allocation 
decisions requiring the input on evolution of various moments of equity prices. In this regard, we 
look at CR1 and CR2 on the total connectedness indexes of returns, volatility, skewness and kurtosis, 
depicted by TCI_RET, TCI_IQR, TCI_SKEW and TCI_KURT. Then we investigate the causal 
impact on the total within-layer spillover of returns, volatility, skewness and kurtosis, which we call 
RET-RET, IQR-IQR, SKEW-SKEW, and KURT-KURT. Finally, we also predict the cross-layer 
spillover involving the four underlying moments of stock prices, which results in a total of additional 
12 indicators, with the names capturing the obvious across-strata spillovers, namely: RET-IQR, RET-
SKEW, RET-KURT, IQR-RET, IQR-SKEW, IQR-KURT, SKEW-RET, SKEW-IQR, SKEW-
KURT, KURT-RET, KURT-IQR, and KURT-SKEW. 
As can be seen from Table 3, the two metrics of climate risks associated with level and variability of 
changes in temperature anomalies consistently predict the various spillover indicators over their 
respective entire conditional distributions, as suggested from the significant (primarily at the 1% 
level) standard normal test-statistics of the nonparametric causality-in-quantiles test. Interestingly, 
the inverted u-shaped pattern over the quantile ranges of 0.10 to 0.90, suggests that the causal effect 
is particularly strong around the median, which corresponds to the normal degree of spillovers. 
Though the effect tends to taper down around the extreme-ends, and at times statistical significance 
is lost, for TCI_IQR and IQR-IQR, predictability due to climate risks for the various conditional states 
of the spillover measures still exists in an overwhelming manner. Thus, we are able to confirm our 
hypothesis, that global shocks involving climate change tends to affect the various performance 
metrics of the eight stock markets, causing spillovers within and across the markets associated with 
returns, volatility, skewness and kurtosis.3 This suggests that climate risks, serving as proxies for 

                                                             
3 Realizing the possibility of omitted variable bias affecting our causality results in a bivariate set-up, we filtered each of 
the spillover indicators by regressing them on West Texas Intermediate (WTI) oil returns, its IQR, as well as the ratio of 
gold-to-silver prices and geopolitical risks, to recover the residuals from these regressions, and re-running the quantile 
causality tests. Oil returns, its volatility and the gold-to-silver ratio are basically capturing metrics of the sate of global 
fundamentals, worldwide uncertainty and sentiment, respectively, as discussed in detail by Salisu et al. (2022). The WTI 
oil price data is obtained from the Global Financial Data, while, gold and silver prices are sourced from Macrotrends: 
https://www.macrotrends.net/. The newspapers-based measure of geopolitical risks developed by Caladara and Iacoviello 
(2022), serves as an alternative metric of rare disaster risks, and is available for download from: 
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disaster risks, have the power to predict the transmission of various aspects of risk and return within 
the system of the G7 plus Switzerland stock markets in a robust manner. Given that our causality 
model is nonparametric in its nature to control for nonlinearity, they provide robust information on 
the entire conditional distribution of the metrics of spillovers.4    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
https://www.matteoiacoviello.com/gpr.htm. As can be seen from Table A1 in the Appendix, the predictive results are 
qualitatively similar to the unfiltered data, thus confirming the robustness of our findings to additional controls. 
4 Although reliable predictive inference is derived based on the nonparametric causality-in-quantiles test, it would also 
be interesting to estimate the sign of the effects of climate risks on the various metrics of multi-layer spillovers at various 
quantiles. However, in a nonparametric framework, this is not straightforward, as we need to employ the first-order partial 
derivatives. Estimation of the partial derivatives for nonparametric models can experience complications because these 
methods exhibit slow convergence rates, which can depend on the dimensionality and smoothness of the underlying 
conditional expectation function. Hence, the reader is referred to Figure A1 to derive tentative conclusions in this regard 
based on the quantiles-on-quantiles (QQ) approach of Sim and Zhou (2015). The technical details of the QQ method have 
been presented in Appendix B. As can be seen from Figure A2, the quantiles of CR1 and CR2, especially the upper ones, 
generally tends to be positively related to the conditional distribution of the multi-layer spillover indexes, in line with 
expectations, that “bad news” in form of climate risks is associated with stronger stock market comovements (Longin and 
Solnik. 1995, 2001). 
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Table 3. Nonparametric causality-in-quantiles test results from climate risks to metrics of spillovers 
  Quantile 
Dependent 
Variable Predictor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

TCI_RET CR1 1.9488* 2.6726*** 4.4284*** 4.8371*** 4.2167*** 3.8422*** 3.4600*** 2.2671** 1.6986* 
CR2 1.6810* 2.4840** 3.5668*** 3.8264*** 3.9164*** 3.4461*** 3.3249*** 2.6811*** 1.8770* 

TCI_IQR CR1 1,6425 2.5001** 4.3415*** 3.3756*** 7.4417*** 3.5394*** 3.8999*** 2.9241*** 1,5838 
CR2 1.7098* 3.0144*** 5.3008*** 3.6549*** 6.2164*** 2.8818*** 4.3641*** 2.7318*** 1,4425 

TCI_SKEW CR1 4.7979*** 7.1857*** 7.8232*** 12.2869*** 9.8962*** 7.4770*** 6.8521*** 4.9092*** 4.3765*** 
CR2 5.3225*** 7.7358*** 8.4830*** 13.9337*** 11.4671*** 9.0396*** 8.4672*** 5.8026*** 5.0734*** 

TCI_KURT CR1 2.5319** 3.3972*** 4.9280*** 16.0273*** 12.5277*** 6.0584*** 3.0516*** 3.8783*** 2.5670** 
CR2 2.6157*** 3.7167*** 6.2343*** 15.0602*** 13.1412*** 5.7116*** 3.0006*** 4.3674*** 2.0879** 

RET-IQR CR1 3.5139*** 4.1197*** 4.5097*** 4.4022*** 4.4220*** 4.1599*** 4.0393*** 3.4275*** 2.6746*** 
CR2 3.5257*** 4.0648*** 4.4322*** 4.9085*** 4.8747*** 5.3956*** 4.5150*** 4.2063*** 2.9563*** 

RET-
SKEW 

CR1 1.8631* 3.1191*** 3.0480*** 3.2717*** 3.1777*** 2.8826*** 2.8703*** 3.0791*** 1.7268* 
CR2 2.2483** 3.0872*** 3.6707*** 2.9293*** 2.7154*** 2.6333*** 3.3329*** 3.2493*** 1.7659* 

RET-KURT CR1 3.5411*** 4.0941*** 4.2828*** 4.9509*** 5.4173*** 5.3454*** 4.9947*** 4.2186*** 3.0558*** 
CR2 3.2263*** 3.4567*** 4.0561*** 5.1601*** 5.1618*** 4.2565*** 4.0609*** 3.7406*** 2.4443** 

IQR-RET CR1 5.1000*** 5.8015*** 4.4822*** 4.2567*** 3.8912*** 3.9477*** 4.0997*** 3.1466*** 2.2029** 
CR2 5.3835*** 6.2393*** 5.5365*** 5.8188*** 4.9075*** 4.4753*** 4.4872*** 3.4857*** 2.2821** 

IQR-SKEW CR1 2.0385** 3.0102*** 3.3893*** 4.3994*** 5.3295*** 5.5178*** 6.0158*** 6.5390*** 5.5490*** 
CR2 2.0732** 2.9003*** 3.2618*** 4.4631*** 4.7555*** 5.1629*** 6.0584*** 6.7725*** 5.8662*** 

IQR-KURT CR1 2.7062*** 2.8356*** 3.6455*** 3.7734*** 3.6154*** 4.1416*** 3.6413*** 3.2142*** 2.6647*** 
CR2 2.2834** 2.6555*** 3.5146*** 3.7276*** 3.6769*** 3.7827*** 4.5948*** 3.6114*** 2.6218*** 

SKEW-
RET 

CR1 3.7892*** 4.5754*** 4.9023*** 5.6401*** 5.4640*** 5.3930*** 5.1658*** 4.7956*** 3.7199*** 
CR2 4.3389*** 5.2765*** 5.4772*** 5.7961*** 5.6600*** 6.1441*** 5.8743*** 5.3150*** 3.6589*** 

SKEW-IQR CR1 2.7171*** 3.0344*** 3.8068*** 4.0603*** 3.6168*** 3.5604*** 3.6235*** 5.0780*** 4.0771*** 
CR2 2.5803*** 2.8090*** 3.1527*** 2.9464*** 3.5884*** 3.9071*** 4.2307*** 5.6453*** 4.4528*** 

SKEW-
KURT 

CR1 3.5175*** 4.8876*** 5.4536*** 5.4423*** 5.9455*** 5.2499*** 4.1446*** 3.2739*** 2.2212** 
CR2 3.4864*** 4.6507*** 5.2041*** 5.2851*** 5.3706*** 5.0045*** 3.7064*** 2.9337*** 2.3702** 

KURT-RET CR1 2.9320*** 3.1936*** 4.1050*** 3.6284*** 4.2022*** 4.6889*** 5.1084*** 6.2973*** 5.8719*** 



21 
 

CR2 2.7631*** 2.7612*** 3.4228*** 3.7231*** 3.7956*** 3.9728*** 5.0936*** 7.3491*** 5.4260*** 
KURT-IQR CR1 4.8182*** 4.3085*** 4.9920*** 5.3925*** 5.3584*** 4.9674*** 5.5257*** 5.6894*** 4.8397*** 

CR2 4.8214*** 4.3225*** 5.1770*** 5.6291*** 5.5569*** 5.7739*** 5.2486*** 5.9354*** 4.8641*** 
KURT-
SKEW 

CR1 2.6574*** 3.1989*** 3.6153*** 3.5397*** 3.9158*** 4.4413*** 3.7180*** 3.7086*** 3.8261*** 
CR2 2.3529** 3.5111*** 4.3280*** 4.3944*** 4.2959*** 4.3436*** 4.0555*** 3.6646*** 3.5870*** 

Note: Entries report the standard normal test statistic for the hypothesis that there is no Granger causality for a particular quantile running from a specific climate risks predictor to 
a particular spillover metric; ***, ** and * indicates rejection of the null hypothesis at 1% (Critical value: 2.5750), 5% (Critical value: 1.96), and 10% (Critical value: 1.645) level 
of significance, respectively. The total connectedness indexes of returns (RET), volatility (inter quantile range, i.e., IQR), skewness (SKEW) and kurtosis (KURT) is depicted by 
TCI_RET, TCI_IQR, TCI_SKEW and TCI_KURT, respectively; Total within-layer spillover of RET, IQR, SKEW and KURT is called: RET-RET, IQR-IQR, SKEW-SKEW, and 
KURT-KURT, respectively; The cross-layer spillover involving RET, IQR, SKEW and KURT are: RET-IQR, RET-SKEW, RET-KURT, IQR-RET, IQR-SKEW, IQR-KURT, 
SKEW-RET, SKEW-IQR, SKEW-KURT, KURT-RET, KURT-IQR, and KURT-SKEW. CR1 and CR2 are climate risks due to year on-year changes in global temperature 
anomalies and its volatility (i.e., IQR) of the same, respectively.
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5. Conclusions 
In this paper, we conduct a comprehensive analysis on the transmission of returns and measures of 
risk (volatility, skewness and kurtosis) across the G7 plus Switzerland stock markets, approached 
using a QADL-MIDAS model, over the period December 1924 to February 2023, corresponding to 
the entire financial history of the markets under examination. Using the multi-layer spillover 
approach, we evaluate the risks and returns spillover effects between stock markets for each measure 
in one-and four-layer analyses. By allowing for not only within-layer but also cross-layer spillovers, 
we describe in better detail the transmission mechanism of returns and risks across the stock markets.  
Our empirical findings suggest that the US stock market tends to transmit return and risk measures to 
the other markets, with a higher degree observed during turbulent periods. This extends the evidence 
from the less comprehensive but typical within-layer analyses often used in the existing literature to 
show the intensity and occurrence of returns and risks spillover effects. Therefore, our main analysis 
points to the significance of considering all four moments of stock prices when studying the spillover 
effect across stock markets. Accordingly, investors and policymakers concerned with the systemic 
risks transmission among advanced stock markets should not overlook the individual layers or, 
importantly, the significant cross-layer spillovers, when examining information transmission 
dynamics. Otherwise, an important part of the returns and risks transmission would be missed, 
possibly making any investment and risk management decision or policy formulation incomplete and 
suboptimal. This evidence has also implications for portfolio allocation and risk inference as limiting 
the optimization analysis to the first and second moments of stock returns without considering 
skewness and kurtosis or the interaction between the four measures might lead to incomplete portfolio 
implications and thereby decisions, especially under the frequent stress experienced by global stock 
markets. Accordingly, the development of portfolio allocation models using returns, volatility, 
skewness and kurtosis is required for the sake of completeness.  
In a different strand of research, we evaluate the role of rare disaster risks, captured by changes in 
global temperature anomalies and its volatility, in predicting the conditional distribution of layer-
based returns and risks spillovers. We conclude that climate risks drive the patterns of returns and 
risks connectedness. This new evidence has direct investment and policy implications, as it provides 
a structured approach to link spillovers of moments with disaster risks associated with climate change 
and global warming. This implies that portfolio managers and policymakers concerned with stock 
market stability and the well-functioning stock markets of developed economies should take a close 
look at climate risks and accordingly formulate preventive policies to make stock markets more 
resilient to climate change and improve their stability. 
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Future research strands could include the examination of a broader sample of financial markets or 
regions, especially involving emerging countries, which are known to be more impacted by climate 
risks. 
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APPENDIX: 
Table A1. Nonparametric causality-in-quantiles test results from climate risks to filtered metrics of spillovers 

  Quantile 
Dependent 
Variable Predictor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

TCI_RET CR1 1,1883 1.7383* 1.7709* 2.8347*** 3.2897*** 2.3301** 2.4800** 1.7683* 1,0635 
CR2 1,1425 1,4457 2.1038** 2.4502** 3.1783*** 2.5067** 1.9477* 1.9631** 1,2008 

TCI_IQR CR1 1.8046* 2.2261** 2.6158*** 2.8617*** 3.4995*** 3.4770*** 3.2348*** 2.5408** 1.9131* 
CR2 1,5023 2.3352** 2.8545*** 2.8934*** 3.9860*** 3.6641*** 3.1429*** 3.3989*** 2.0676** 

TCI_SKEW CR1 5.2793*** 7.4174*** 8.7810*** 9.0485*** 9.1041*** 8.7176*** 7.8905*** 6.8970*** 5.0471*** 
CR2 5.3433*** 7.5250*** 8.6359*** 9.5185*** 9.6096*** 9.7988*** 9.2342*** 7.6921*** 5.3501*** 

TCI_KURT CR1 2.0985** 2.4082** 2.9188*** 2.6687*** 2.8691*** 3.0774*** 2.5835*** 2.4747** 1.7889* 
CR2 1.9760** 3.0685*** 3.3677*** 3.6991*** 3.4021*** 3.7774*** 3.2900*** 3.1627*** 2.0860** 

RET-IQR CR1 3.1173*** 4.3631*** 5.5057*** 5.5416*** 6.0212*** 6.0685*** 5.0265*** 4.1467*** 3.1012*** 
CR2 3.2608*** 4.0419*** 4.1791*** 4.7415*** 4.5156*** 4.5891*** 3.8285*** 3.5399*** 2.3031** 

RET-
SKEW 

CR1 1,3293 1.8955* 1.9140* 2.0080** 2.1276** 2.7139*** 2.6420*** 3.1418*** 2.5798*** 
CR2 2.2959** 2.9380*** 2.8742*** 2.5209** 2.0631** 2.5600** 3.0280*** 3.4563*** 2.4786** 

RET-KURT CR1 2.8079*** 2.7109*** 3.1731*** 3.0342*** 3.1352*** 3.1977*** 3.3732*** 3.2585*** 2.5833*** 
CR2 2.4881** 2.2949** 2.2314** 3.0035*** 3.1551*** 2.8149*** 3.6282*** 2.9296*** 2.4074** 

IQR-RET CR1 4.3883*** 5.8951*** 5.0263*** 4.2549*** 3.8998*** 3.5298*** 3.4032*** 3.0702*** 2.2281** 
CR2 4.9705*** 6.1921*** 6.1108*** 5.9167*** 4.7262*** 4.4492*** 4.2857*** 3.5693*** 2.4976** 

IQR-SKEW CR1 2.0677** 2.9458*** 2.8643*** 3.7991*** 4.1211*** 4.3131*** 5.0281*** 5.8681*** 5.0760*** 
CR2 2.1885** 2.6189*** 2.8760*** 4.2256*** 5.4895*** 5.4588*** 6.1070*** 7.1640*** 5.7428*** 

IQR-KURT CR1 2.4151** 2.4139** 3.6007*** 3.5412*** 3.2867*** 3.4623*** 3.6904*** 3.0588*** 2.5454** 
CR2 2.1497** 2.4640** 3.5225*** 3.3493*** 3.4419*** 3.8291*** 4.0836*** 3.6769*** 2.4655** 

SKEW-
RET 

CR1 3.2961*** 3.5481*** 4.0238*** 3.3676*** 3.6674*** 3.3330*** 3.8302*** 3.3319*** 3.9117*** 
CR2 3.8665*** 3.5529*** 3.6318*** 3.2970*** 4.3011*** 3.9549*** 3.8462*** 3.4349*** 3.5315*** 

SKEW-IQR CR1 3.0284*** 3.7921*** 4.4064*** 4.3688*** 4.2593*** 4.0585*** 4.1018*** 6.2528*** 4.1120*** 
CR2 3.0249*** 4.0450*** 3.7889*** 4.4497*** 4.6462*** 4.7138*** 4.9095*** 6.3299*** 4.5175*** 

SKEW-
KURT 

CR1 2.8288*** 2.7418*** 3.0729*** 2.8910*** 3.2159*** 2.8434*** 2.8435*** 2.4479** 1,5204 
CR2 2.4924** 2.6087*** 2.7055*** 2.9599*** 3.0690*** 2.9920*** 2.6149*** 1.9902** 1,336 
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KURT-RET CR1 3.1692*** 3.7916*** 3.7972*** 4.1422*** 3.8069*** 3.2475*** 4.0060*** 5.4051*** 5.3537*** 
CR2 2.6216*** 3.3356*** 3.6598*** 3.7664*** 3.7848*** 3.6034*** 4.8096*** 6.1844*** 5.0436*** 

KURT-IQR CR1 3.3737*** 3.3185*** 3.8129*** 3.8275*** 4.3643*** 4.2111*** 3.6901*** 4.0247*** 3.8794*** 
CR2 3.0798*** 3.3255*** 3.9290*** 4.3188*** 5.2142*** 4.4834*** 4.4458*** 5.0470*** 4.3226*** 

KURT-
SKEW 

CR1 2.7346*** 3.3950*** 3.6090*** 3.7781*** 3.3367*** 3.2700*** 3.5793*** 3.1732*** 3.2892*** 
CR2 2.5885*** 2.8921*** 2.7919*** 2.8811*** 3.3223*** 4.3073*** 4.7272*** 3.7095*** 3.4392*** 

Note: Entries report the standard normal test statistic for the hypothesis that there is no Granger causality for a particular quantile running from a specific climate risks predictor to 
a particular filtered spillover metric, obtained from running a regression of the spillover index on oil returns, its volatility (inter quantile range, i.e., IQR), gold to silver ratio, and 
geopolitical risks, and recovering the residuals; ***, ** and * indicates rejection of the null hypothesis at 1% (Critical value: 2.5750), 5% (Critical value: 1.96), and 10% (Critical 
value: 1.645) levels of significance, respectively. The total connectedness indexes of returns (RET), volatility (IQR), skewness (SKEW) and kurtosis (KURT) is given by depicted 
by TCI_RET, TCI_IQR, TCI_SKEW and TCI_KURT, respectively; Total within-layer spillover of RET, IQR, SKEW and KURT is called: RET-RET, IQR-IQR, SKEW-SKEW, 
and KURT-KURT, respectively; The cross-layer spillover involving RET, IQR, SKEW and KURT are: RET-IQR, RET-SKEW, RET-KURT, IQR-RET, IQR-SKEW, IQR-KURT, 
SKEW-RET, SKEW-IQR, SKEW-KURT, KURT-RET, KURT-IQR, and KURT-SKEW. CR1 and CR2 are climate risks due year on-year changes in global temperature anomalies 
and its volatility (i.e., IQR) of the same, respectively. 
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Figure A1. Quantile-on-quantile results of the effect of climate risks on multi-layer spillover 
indexes 
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A1.4. KURT-KURT 
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A1.7. RET-KURT 
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A1.10. IQR-KURT 
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A1.13. SKEW-KURT 
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A1.16. KURT-SKEW 
(a) CR1 

 

(b) CR2 

 Note: y corresponds to various indexes of multi-layer spillovers (RET-RET, IQR-IQR, SKEW-SKEW, and KURT-
KURT, RET-IQR, RET-SKEW, RET-KURT, IQR-RET, IQR-SKEW, IQR-KURT, SKEW-RET, SKEW-IQR, SKEW-
KURT, KURT-RET, KURT-IQR, and KURT-SKEW), and; x to climate risks (CR1 and CR2). 
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Appendix B: Quantile-on-quantile (QQ) regression 
We study the impact of the climate risks variables (CR1 and CR2), denoted by ݔ for the 12 indicators 
of multi-layer spillovers, namely: RET-IQR, RET-SKEW, RET-KURT, IQR-RET, IQR-SKEW, 
IQR-KURT, SKEW-RET, SKEW-IQR, SKEW-KURT, KURT-RET, KURT-IQR, and KURT-
SKEW, captured by ݕ using a quantile-on-quantile (QQ) regression model. This method is chosen, 
as it allows the for the change in ݔ, conditional on its current state, to have varied influences on ݕ, 
where a standard quantile regression simply estimates the heterogeneous response of ݕ to ݔ at various 
points of the conditional distribution of ݕ.  
For the ease of estimation, we choose the single equation regression method of Sim and Zhou (2015) 
for estimating QQ models, over the triangular system of equations-based approach of Ma and 
Koenker (2006).  
Let ߠ superscript denote the quantile of the ݕ and ݔ under consideration. We first postulate a model 
for the ߠ-quantile of ݕ as a function of the ݔ (note this is for the temporaneous relationship). We have: 

௧ݕ = ௧ݔఏߚ + ௧ఏߝ   , (B1) 
where ߝ௧ఏ is an error term that has a zero ߠ -quantile.  
As we do not have a prior on how the ݕ and ݔ changes are interlinked, we allow the relationship 
function ߚఏ(ݔ௧) to be unknown. To examine this linkage between the ߠ-quantile of ݕ and ߬-quantile 
of ݔ, denoted by ݔఛ, we linearize the function ߚఏ(ݔ௧) by taking a first-order Taylor expansion of ߚఏ 
(.) around ݔఛ, which yields the following:  

(௧ݔ)ఏߚ ≈ (ఛݔ)ఏߚ + ௧ݔ)(ఛݔ)ఏᇱߚ −  ఛ) (B2)ݔ
Based on Sim and Zhou’s (2015) study, we can redefine ߚఏ(ݔఛ) and ߚఏᇱ(ݔఛ), respectively, as ߚ଴(ߠ, ߬) 
and ߚଵ(ߠ, ߬). Then, equation (9) can be re-written as follows:    

(௧ݔ)ఏߚ ≈ ,ߠ)଴ߚ ߬) + ,ߠ)ଵߚ ௧ݔ)(߬ −  ఛ) (B3)ݔ
Ultimately, we substitute equation (B3) into equation (B1) to obtain the following:  

௧ݕ = ,ߠ)଴ߚ ߬) + ,ߠ)ଵߚ ௧ݔ)(߬ − (ఛݔ +  ௧ఏ (B4)ߝ
Unlike a standard conditional quantile function, the expression  

,ߠ)଴ߚ ߬) + ,ߠ)ଵߚ ௧ݔ)(߬ −  ఛ) (B5)ݔ
captures the relationship between the ߠ-quantile of the ݕ and ߬-quantile of ݔ, given that ߚ଴and ߚଵ are 
doubly indexed in ߠ and ߬. That is, this expression can capture the overall dependence structure 
between the ݕ and ݔ through the dependence between their respective distributions. 
To estimate (B4), we solve for:  
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minబభ
෍ ఏߩ

௡

௜ୀଵ
௧ݕൣ − ଴ − ଵ(ݔ௧ − ܭ൧(߬^ݔ ൬ܨ௡(ݔ௧) − ߬

ℎ ൰ (B6) 

to obtain the estimates ߚመ଴(ߠ, ߬) and ߚመଵ(ߠ, ߬), where the function ߩఏ is the tilted absolute value 
function that provides the ߠ-conditional quantile of ݕ௧ as the solution. Because we are interested in 
the effect exerted locally by the ߬-quantile of ݔ, we employ a Gaussian kernel ܭ(. ) to weight the 
observations in the neighbourhood of ݔఛ, based on bandwidth ℎ (=0.05, following Sim and Zhou 
(2015)). The weights are inversely related to the distance of ݔ௧ from ݔఛ, or more conveniently, the 
distance of the empirical distribution function 

(௧ݔ)௡ܨ = 1
݊ ෍ ௞ݔ)ܫ < (௧ݔ

௡

௞ୀଵ
 (B7) 

from ߬, where ߬ is the value of the distribution function that corresponds with ݔఛ. 
 
 
 
 


