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ABSTRACT

Precious metals occur naturally and have a high resistance to corrosion or oxidation. These natural resources are used as investment instruments to 
protect wealth values, such as gold, silver, and palladium. Price movements need to be understood when investing, and it is achieved through a time 
series model that predicts future prices. Also, autoregressive fractional integrated moving average (ARFIMA) is used to model price movements with 
long memory effects, while fuzzy time series Markov chain (FTSMC) is employed for performing numerical approach. It was observed that gold 
price movement has a long memory effect; therefore, it is eligible to be formed into the ARFIMA model. However, the silver and palladium prices 
do not contain a long memory effect, which means their movements are only formed through the FTSMC numerical model. The ARFIMA modeling 
results show that the gold price long memory model has the best accuracy with the smallest error value and also demonstrates excellent goodness of 
fit. Furthermore, the gold price long memory model movement has long-term stability compared to other precious metals. This provides an investment 
advantage because it is a stable asset, easy to liquidate in cash, free of interest, has an emergency fund role, and protects wealth’s value.

Keywords: Precious Metal, Long Memory, Fuzzy Time Series Markov Chain, Level of accuracy 
JEL Classifications: C32, C58, C88, G23

1. INTRODUCTION

Precious metals are used extensively in energy fields, such as 
catalytic carbon dioxide reduction, petroleum cracking, and 
hydrogen energy production. Therefore, recycling strategies were 
optimized to promote coordinated energy and environmental 
development. Chen et al. (2021) found that the demand and 
consumption of this natural resource are increasing every year, 
thereby causing it to be expensive and valuable as an investment 
instrument. Gold is a well-known type of precious metal, which 
is widely used as jewelry and valuable property because it is soft 
and malleable. Furthermore, gold has been a popular and trusted 
investment instrument over time (Hillier et al., 2006; Blose, 
2010; Baur and Lucey, 2010; Baur and McDermott, 2010; Hood 
and Malik, 2013; Reboredo, 2013; Ciner et al., 2013; Areal et al., 
2015; Beckmann et al., 2015; O’Connor et al., 2015; Baur and 

McDermott, 2016; Hoang et al., 2016; Iqbal, 2017; Bekiros et  al., 
2017; Junttila et al., 2018; Tronzano, 2021). This is consistent 
with the discovery of Makala and Li (2021) that aside from being 
a valuable asset, gold is an investment instrument capable of 
protecting wealth because its value tends to be higher than other 
precious metals, such as platinum and palladium.

Aside from gold, silver is also one of the precious metals 
categorized as the earth’s mineral product. It is characterized by a 
glossy white color, anti-corrosion, and soft nature. It is also often 
used as a material for jewelry, currency, home ornaments, and 
mirrors. Corbet and Connor (2021) found that pure silver must 
be mixed with other metal types because of its soft nature when 
forming another product. Another type of precious metal with a 
reasonably expensive price is Palladium (Maghyereh and Abdoh, 
2022). It is a shiny white metal with the lowest melting strength 
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compared to others and is very dense, not easily damaged by 
chemical compounds and physical impact.

The price of precious metals often changes over time; hence 
its probable future cost is predictable by observing the price 
movement patterns. Empirical predictions usually provide the 
community and investors with the basis for planning and decision-
making to increase profits and prevent losses. A method used 
for predicting the price movement of precious metals is the time 
series model.

Khairuddin et al. (2016) stated that the time series method is used 
for time-ordered data. According to Wei (2019), the data has a 
repeating pattern in which the period in the past tends to reoccur 
in the present or future. The time series model analysis is meant to 
determine a pattern or regularity for modeling and identifying the 
component factors affecting the value in the time series (Marwan 
et al., 2021). Classic time series models include autoregressive 
integrated moving averages (ARIMA), time series regression, 
and exponential smoothing. The ARIMA model is a combination 
of autoregressive (AR) and moving average (MA), which 
represents stationary assumption (Yan et al., 2022). Granger (1980) 
discovered that the time series data showing a long memory pattern 
is seen in the autocorrelation function (ACF) plot, which slowly 
decreases for a longer period, while Monge and Infante (2022) 
modeled data with long memory effects using autoregressive 
fractionally integrated moving average (ARFIMA). Based on 
Hosking (1981), these models have long-term pattern properties 
that are traceable through their stationary by determining the 
differentiating coefficient of Geweke and Porter-Hudak (GPH). 
This is in line with Geweke (1983), who stated that the GPH 
method directly estimates the difference coefficient without 
knowing the AR and MA order values. The next long memory 
model development is the combination of ARFIMA and Poisson 
distribution to ensure non-negative credibility per period in the 
affine frequency risks prediction (Pinquet, 2020).

Furthermore, the numerical approach for the time series data is 
performed using the fuzzy time series (FTS) model (Severiano 
et  al., 2021) and fuzzy logic concept in order to model applicants’ 
numbers at a university (Cheng et al., 2008). Subsequently, several 
FTS methods have been proposed, such as the Chen model, 
Weighted, Markov, Stevenson Porter, and the multiple attribute 
fuzzy time series approach (Egrioglu et al., 2022). Tsaur (2012) 
analyzed the prediction accuracy of the Taiwan currency exchange 
rate with the US dollar by combining the FTS method and the 
Markov chain to obtain the largest probability using a transition 
probability matrix. The results showed that the Fuzzy time series 
Markov chain (FTSMC) method provides a fairly good accuracy 
compared to the FTS proposed by Cheng et al. (2008), Ramadani 
and Devianto (2020), as well as Sjofjan and Adli (2022). Further 
development by Zalan and Yaseen (2021) predicted the birth rates 
in Basra Province with the fuzzy-ARFIMA model and compared 
the result using the smallest value evaluation criteria of AIC, BIC, 
and Adjust R-squared.

Ramadani and Devianto (2020) forecasted bitcoin prices using 
three FTS methods, namely FTS-Chen, FTS-Segmented Chen, 

and FTSMC and discovered that the FTSMC has a better accuracy 
rate compared to other methods because it has the smallest MAPE 
value. Meanwhile, Lawal et al. (2020) examined the long memory 
effect of oil prices and exchange rates on Nigerian stocks and 
found that stock prices are driven by exchange rates and oil prices. 
Zaenurrohman et al. (2021) also conducted a literature study using 
Markov chains to predict currency exchange rates and inflation, 
followed by the use of the Chen and Hsu method for forecasting 
the Sharia Stock Exchange Index in the Jakarta Islamic Index.

The previous time series data modeling conducted showed that 
the ARFIMA model has good results than the ARIMA regarding 
long memory effect data. It is important to note that numerical 
modeling is mostly performed with the FTS method and its 
variations, but only a few compared the ARFIMA and FTSMC 
models when determining the best approach. Therefore, this 
current research employed the ARFIMA model as an extension 
of ARIMA for modeling the precious metals’ monthly price 
movements. Furthermore, the proposed model is compared with 
the FTS approach, which is assessed with an accuracy level based 
on the value of MAE, RMSE, and MAPE. This study serves as a 
basis for future energy economy and investment policies.

2. MATERIALS AND METHODS

The precious metal prices used were the monthly data on gold, 
silver, and palladium prices from April 2017 to May 2022, which 
is about 62 datasets sourced from investing.com. Price movement 
detection was performed using the ARFIMA model for data with 
long memory effects, while the numerical approach was conducted 
with the FTSMC. In this section, ARFIMA and FTSMC’s theories 
were explained as the steps used to form a time series model for 
the precious metal price movement.

2.1. Autoregressive Fractionally Integrated Moving 
Average (ARFIMA)
The steps in forming a time series model with data containing long 
memory effects are modeled into ARFIMA as follows:
Step 1. Check the stationary data for homogeneity of variance. 
When the data is not stationary, data transformation was performed 
to obtain a rounded value (λ). For example, when data Xt is not 
stationary with respect to variance, it is transformed by the formula 
T(Xt)=(Xt

λ-1/λ, where λ represents the transformation parameter. 
The data is considered stationary when parameter λ=1 goes 
through the rounded value process (Wei, 2019).
Step 2. Create an ACF plot of the transformed data to identify 
whether the data contains a long memory effect or not.
Step 3. Estimate the differentiating parameters using the 
Geweke and Porter-Hudak method with the following formula 
(Geweke,  1983):
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Where I(λj) is the periodogram with m Fourier frequency λj = 2π j
T

for j=1,2,…,m and T represents the observational data number. 
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Meanwhile, xj is observational data and defined by the value 
yj  =  lnI(λj).
Step 4. Differentiate the transformed data using the value of d ̂GPH.
Step 5. Identify the ARFIMA model to determine the combination 
of its parameters by plotting ACF and PACF from differentiating 
data. The ACF plot shows the order of MA(q), while that of PACF 
describes the order of AR(p).
Step 6. Parameter estimation and significance test of ARFIMA 
model. After obtaining all the candidate models, the next step is 
estimating each model’s parameters, followed by the significance 
test. The model was considered feasible for usage when the 
parameters were significant, with a significance level of α = 5%.
Step 7. Choose the best ARFIMA model with the smallest Akaike 
information criterion (AIC) value.
Step 8. Test the assumptions of the best ARFIMA model residues, 
which include non-autocorrelation and normality tests.
Step 9. Determine the best ARFIMA model equation and its 
interpretation.

2.2. Fuzzy time series Markov Chain (FTSMC)
The main difference between FTS and time series models is the 
variable values employed in modeling. For example, a fuzzy set 
of real numbers were applied in FTS to a certain universal set. 
The fuzzy set was interpreted as a class of numbers with the same 
limit, and the modeling stages are as follows:
Step 1. Collect historical data and define the universal set U. The 
first step is determining the minimum (Dmin) and maximum (Dmax) 
values of the historical data. It is important to note that the values 
of D1 and D2 are independently determined since the two number 
values are positive real numbers. In addition, D1 and D2 values 
aim to facilitate the formation of intervals, while the universal set 
U is denoted as follows:

U D D D Dmin max� � �[ , ]1 2  (2)

Step 2. Determine the number and length of the intervals. The 
universal set U is partitioned into intervals by using the Sturges 
rule:

n N� �1 3 322, log , (3)

where N is the number of historical data. Then the next interval 
length l was determined using the formula

l
D D D D

n
max min�

� � �[( ) ( )]2 1 (4)

which the intervals un are determined by

u B n l nln � � �� � �[ ; ]1 B (5)

where B=Dmin–D1.

Step 3. Determine the fuzzy set for the entire universe set U using 
the following rules:
1. If the historical data (Yt) represents ui, then ui membership

degree is 1, ui+1 is 0.5, and others are 0
2. If the historical data (Yt) denotes ui, 1 < i < n, then the

membership degree of ui is 1, ui-1 and ui+1 are 0.5, while others 
are 0

3. If the historical data (Yt) is un, then the membership degree of
un is 1, un-1 is 0.5, and others are 0.

Therefore, the fuzzy set for the entire universe set U is expressed 
as follows:
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Step 4. Fuzzification of historical data. This is a data identification 
process in fuzzy sets. If the historical data collected is included in 
ui, then the data is fuzzified into Ai.
Step 5. Determine the fuzzy logical relationship (FLR) and fuzzy 
logical relationship group (FLRG).

Definition 1. According to Cheng (2008), when F(t)=Ai and 
F(t–1)=Aj, then the relationship between F(t) and F(t–1) is 
called a fuzzy logical relationship (FLR), represented by Ai→Aj, 
where Ai is the left-hand side (LHS) and Aj is the right-hand side 
(RHS) of the FLR. When two FLRs have the same fuzzy set 
(LHS Ai→Aj1,Ai→Aj2), they are categorized into a fuzzy logical 
relationship group (FLRG) Ai,Aj1→Aj2.

Step 6. Create a Markov transition probability matrix. The 
transitional probability for that state is written as follows 
(Tsaur,  2012):

P
M
M

i j nij
ij

i
= =, , , , ,...,for 1 2 3 (7)

The transition probability from state Ai to state Aj is Pij, while the 
amount of data from the state Ai is Mi and the transition times 
from state Ai to state Aj is Mi. Therefore, the transition probability 
matrix R from a state space is written as follows:
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(8)

Step 7. Calculate the initial modeling results based on the 
probability matrix obtained in the previous step using the following 
rules:

Rule 1. If the FLRG of Ai changes to the empty set (Ai→ɸ), then the 
modeling result of F(t) is mi, with the mean value of ui satisfying

F t mi( ) = (9)

Rule 2. If the FLRG of Aj does transitions from one state to another 
one Ai →Ak with Pij =0 and Pik =1,j ≠ k, then the modeling result 
of F(t) is mk with the mean value of uk satisfying

F t m P mk ik k( ) = = (10)
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Rule 3. If the FLRG from Aj is transited from one-to-many 
(i.e Aj→A1, A2,…An, j=1,2,…,n) and the data set X(t–1) as in the 
state Aj at time t–1, then the result of modeling F(t) is as follows:

F t m P m P m P X t P

m P m
j j j j j jj

j j j

( ) .. ( )

..

( )

( )

� � � � � �
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� �

� �

1 1 2 2 1 1

1 1

1

nn jnP  (11)

Where m1,m2.,.mj-1,mj+1..,mn is the midpoint of u1,u2.,uj-1,uj+1.,un and 
mj is substituted for X(t–1) to have the information from the state 
Aj at t-1.

Step 8. Calculate the adjusted value in the model in order to correct 
the error caused by the biased Markov chain matrix. Therefore, 
the modeling adjustment value (Dt) is needed for correcting the 
error using the following rules:
a. When state Ai changes with Aj, then state Ai at t–1 is F(t-1)=Ai.

For a transition up to the state Aj at t, (i<j), the adjustment
value of Dt is Dt1 =(l/2).

b. When state Ai moves to Aj, state Ai at time t–1 as F(t–1)= Ai,
during the transition down to state Aj at t,(i>j) showed the
adjustment value of Dt is Dt1 =(l/2)

c. When state Ai at time t-1 is F(t-1)=Ai and there is a forward
transition jump to state Ai+s at t, 1≤s≤n-i, then the adjustment
values of Dt and Dt2 =(l/2)s, where s is the number of
forwarding transition jumps

d. When state Ai at time t-1 is F(t-1)=Ai and there is a backward
transition jump to state Ai-v at t, 1≤v≤i, then the adjustment
value of Dt is Dt2=–(l/2)v, where v is the number of backward
transition displacement jumps.

Step 9. Determine the final modeling result by summing the initial 
value with those adjusted. The general form of the final modeling 
result F’(t) is expressed as follows

F t F t D Dt t'( ) ( ) .� � �1 2 (12)

2.3. Modeling Accuracy
Error calculation is a strategy for determining the obtained model’s 
accuracy. It is used to examine how closely the modeling data 
matches the actual ones. According to Kumar et al. (2022), a small 
value generated from the error size represents a better model. The 
mean absolute percentage error (MAPE) was used to measure the 
accuracy of each modeling method using the following formula:

1

1 1
ˆ

00%
=

−
= ×∑

t tn

t
t

X X
MAPE

n X
 (13)

The MAPE accuracy criteria are as follows:
a. The modeling accuracy is very good when the MAPE value

is <10%
b. The modeling accuracy is good when the MAPE value is

10–20%
c. The modeling accuracy is sufficient when the MAPE value is

20–50%
d. The modeling accuracy is not accurate when the MAPE value 

is >50%.

The next accuracy was measured with the root mean square error 
(RMSE) and mean absolute error (MAE) using the following 
formula

2
1

ˆ1 ( )
=

= −∑n
t tt

RMSE X X
n

(14)

1
ˆ1

=
= −∑n

t tt
MAE X X

n
(15)

Where Xt is the actual data and   ˆ
tX  is the modeled data.

3. RESULTS AND DISCUSSION

In this section, the process of modeling the precious metal price 
movement was discussed based on the target model and its stages. 
Subsequently, the model was described using the ARFIMA and 
FTSMC approaches.

3.1. ARFIMA Model Approach to Precious Metal 
Prices
3.1.1. Detection of gold price movement model with ARFIMA
The initial step taken in identifying the gold price movement 
model was to plot the monthly gold price data shown in Figure 1.

Figure 1 shows that the pattern of gold price data for each 
period fluctuates and has an upward trend. The highest point 
in the monthly gold price occurred in July 2020, and since the 
data does not fluctuate around the median and variance values, 
it does not move toward any side. For a time series data to be 
stationary toward variance, the first data transformation stage 
was conducted by determining the rounded value (λ). The 
transformation parameter formula utilized showed a λ value 
of –0.7042. It was concluded that the data was not stationary 
regarding variance; therefore, the second stage of transformation 
was performed, and the value obtained was 1. This means that 
the gold price data is stationary toward variance. The data was 
also investigated to observe whether it contains a long memory 
effect by plotting a stationary ACF against the variance as shown 
in Figure 2.

Based on Figure 2, the data decreases slowly over time and is not 
stationary toward the mean value. The data is made stationary 
by differentiating the value of d, which has been estimated 
using the Geweke Porter-Hudak (GPH) method with a value of 
d ̂GPH= d ̂GPH= 0.3269. Since d ̂GPH<0.5, the data is concluded to 
have a long memory effect and has the ability to be modeled with 
ARFIMA. The next is identifying the ARFIMA model by looking 
at the ACF and PACF plots based on Figures 3 and 4.

Figure 3 shows that the significant value of the ACF coefficient 
reaches lag 12, then based on Figure 4, the PACF coefficient was 
significant only at lag 1. All possible ARFIMA model was formed 
by combining the maximum lag of 1 for the p parameter and lag 
of 12 for the q with d value of 0.3269. These parameters were 
estimated for each candidate model by conducting a significance 
test whose values are shown in Table 1.

The model was considered significant when its probability value 
was small at 0.05, therefore ARFIMA (0,0.3269,1), ARFIMA 
(0,0.3269,2), ARFIMA (0,0.3269,3), ARFIMA (0,0.3269,5), and 
ARFIMA (1,0.3269,0) was significant and useful. The next step 
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is selecting the best model by comparing the AIC values for each 
model presented in Table 2.

Based on the comparison of AIC values in Table 2 for the five 
models, the ARFIMA (1,0.3269,0) has the smallest AIC value 
among other models and was regarded as the best. The residual 
assumption test of the ARFIMA (1,0.3269,0) is shown in Table 3.

Table 3 shows that the obtained P-value of the non-autocorrelation 
test was >0.05, meaning that there is no correlation between 
residues. In the normality test, the obtained P < 0.05 was ignored 
because time series data fluctuates rapidly. Therefore, the ARFIMA 
(1,0.3269,0) model was regarded as the best model using the 
following equation:

( ) ..1 0 85110 3269
1� � ��B X Xt t t� (16)

In Figure 5, the modeling result was close to the actual data, as 
seen from the line that coincides with the outcome. It is therefore 
concluded that the ARFIMA was able to model gold price data 
appropriately.

3.1.2. Detection of silver price movement model with ARFIMA
The initial step taken when identifying the model for the silver 
price movement was the plotting of monthly price data as shown 
in Figure 6.

It was observed from Figure 6 that the pattern of silver price 
data for each period fluctuates and has an upward trend. The 
highest point in the price occurred in August 2020, and since 
the silver price data does not fluctuate around the mean and 
variance, it is not stationary toward the mean or variance. To 
make the time series data stationary toward variance, the first 
data transformation process was performed by determining the 
value of λ. The data processing result shows a value of –1.4456 
but was not stationary toward variance. Meanwhile, the second 
stage produced a λ value of 1, indicating that the silver price 
data was stationary toward variance. A further examination 
was performed to confirm whether the model contains a long 

Figure 1: Plot of gold price monthly data

Figure 3: ACF plot of gold price data

Figure 2: ACF plot of static gold price data against variety

Figure 4: PACF plot of gold price data

Table 1: The optimal parameters of autoregressive fractional integrated moving average (p,d,q)
Model Φ1 θ1 θ2 θ3 θ4 θ5
ARFIMA (0,0.3269,1) <2.22 e-16

ARFIMA (0,0.3269,2) 1.0544 e-11 1.8864 e-8

ARFIMA (0,0.3269,3) 5.9055 e-11 5.8110 e-7 0.0005
ARFIMA (0,0.3269,5) 1.3547 e-9 0.0001 0.0006 0.0058 0.0242
ARFIMA (1,0.3269,0) <2.22 e-16

ARFIMA: Autoregressive fractional integrated moving average
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memory effect or not by plotting ACF against variance as shown 
in Figure 7.

It was observed from Figure 7 that the data slowly decreases 
over time. The test result also showed that the data was not 
stationary toward the mean value. To make the data stationary 
toward the mean, the value of d was differentiated using the 
Geweke Porter-Hudak (GPH) method, and a value of 
ˆ =GPHd   0.7991 was obtained. Since the value of ˆ =GPHd >0.5,

it was concluded that the data has no long memory effect and is 
unable to identify the ARFIMA model. In the next stage, the 
silver price movement formed through the FTSMC numerical 
approach was observed.

3.1.3. Palladium price movement model detection with ARFIMA
The initial step taken to identify the palladium price movement model 
is to plot the monthly palladium price data as shown in Figure 8.

Based on Figure 8, the pattern of palladium price data for each 
period fluctuates and has an upward trend. The highest price 
point occurred in April 2021. Since the palladium price data does 
not fluctuate around the mean and variance, it is termed as not 
stationary toward the mean or variance. To make the time series 
data stationary toward variance, the first transformation stage was 
performed by determining the value of λ, which is 0.4341. It was 
concluded that the data was not stationary toward variance; hence 
the second stage was conducted, and a λ value of 1 was obtained. 
This means that the palladium price data was stationary toward 
variance. The model was further checked; perhaps it contains a 
long memory effect or not by plotting the stationary ACF against 
variance as shown in Figure 9.

According to Figure 9, the data decreases slowly over time and 
the test result showed that the data was not stationary toward the 

Table 2: Comparison of akaike information criterion 
value of autoregressive fractional integrated moving 
average (p,d,q)
Model AIC
ARFIMA (0,0.3269,1) −1051.429
ARFIMA (0,0.3269,2) −1068.362
ARFIMA (0,0.3269,3) −1075.692
ARFIMA (0,0.3269,5) −1079.753
ARFIMA (1,0.3269,0) −1092.959
AIC: Akaike information criterion, ARFIMA: Autoregressive fractional integrated 
moving average

Table 3: The residual assumption test of autoregressive 
fractional integrated moving average (1,0.3269,0)
Residual assumption Non-autocorrelation Normality
P 0.6453 0.0445
ARFIMA: Autoregressive fractional integrated moving average

Figure 5: Graph of gold price actual data and modeling results

Figure 6: Monthly data plot of silver prices

Figure 7: ACF plot of stationary silver price data against variety
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mean value. For it to be stationary toward the mean, the data was 
differentiated with the value of d which has been estimated using 
the Geweke Porter-Hudak (GPH) method with a score of 
ˆ =GPHd  0.8203. Since .5ˆ

GPH , it was concluded that the data 
has no long memory effect and is unable to identify the ARFIMA 
model. The next stage was to observe the palladium price 
movement formed by the FTSMC approach.

3.2. FTSMC Model Approach to Precious Metal Prices
3.2.1. Gold price movement model with FTSMC approach
The first step is setting the value of Dmin=1268.7 and Dmax=2026.9, 
followed by determining the values of D1=0.7 and D2=0.1. The 
universal set U is expressed as follows:

U D D D Dmin max� � ��� �� � � �1 2 1268 000 2027 000, . , .  (17)

The universal set U was partitioned into several parts with n 
intervals using the following Sturges formula:

n � � � �1 3 322 62 6 9543 7, log . (18)

Also, the length of the interval was determined using the formula 
below:

l
D D D D

n
max min�

� � �

�
�� � � �

[( ) ( )]

[ . . ( . .

2 1

2026 900 0 100 1268 700 0 700))]
.

7
108 428�  (19)

The universal set was defined as follows:

u u

u
1 2

3

1268 000 1376 429 1376 429 1484 857

1484 857

� � � � � �
�

. ; . , . ; . ,

. ;11593 286. ,� �

u u

u
4 5

6

1593 286 1701 714 1701 714 1810 143

1810 143

� � � � � �
�

. ; . , . ; . ,

. ;11918 571 1918 571 2027 0007. , [ . ; . ]� � �u  (20)

Then the fuzzy set for each linguistic variable was obtained as 
follows:

A
u u u u u u u1

1 2 3 4 5 6 7

1 0 5 0 0 0 0 0
� � � � � � �

.

A
u u u u u u u2

1 2 3 4 5 6 7

0 5 1 0 5 0 0 0 0
� � � � � � �

. .

A
u u u u u u u2

1 2 3 4 5 6 7

0 5 1 0 5 0 0 0 0
� � � � � � �

. .

A
u u u u u u u3

1 2 3 4 5 6 7

0 0 5 1 0 5 0 0 0
� � � � � � �

. .

A
u u u u u u u4

1 2 3 4 5 6 7

0 0 0 5 1 0 5 0 0
� � � � � � �

. .

A
u u u u u u u5

1 2 3 4 5 6 7

0 0 0 0 5 1 0 5 0
� � � � � � �

. .

A
u u u u u u u6

1 2 3 4 5 6 7

0 0 0 0 0 5 1 0 5
� � � � � � �

. .

A
u u u u u u u7

1 2 3 4 5 6 7

0 0 0 0 0 0 5 1
� � � � � � �

.  (21)

After the linguistic variables were defined, the next step was the 
fuzzification process, which focused on determining the linguistic 
interval of the actual data. For example, the actual value of gold 
price in April 2017 was 1347.1, meaning that the data was in the 
linguistic interval and variable of u1 and A1, respectively. Table 4 
shows the fuzzification process conducted.

Linguistic variables have been defined in each table for the actual 
data. It was observed that the data was in a fuzzy set; hence the next 
stage is determining the relationship between fuzzy sets through 
fuzzy logic relations (FLR) and fuzzy logic relations group (FLRG) 
according to Definition 1. Tables 5 and 6 show the results obtained.

The monthly fuzzy set relationship was analyzed in Table 5. 
Furthermore, the relationship was represented with Ai→Aj, where 
Ai was at the left-hand side (LHS) and Aj was at the right-hand 
side (RHS) of the FLR. The above fuzzy set relationship showed 

Figure 9: ACF plot of stationary palladium price data against variety

Figure 8: Plot of monthly data on palladium prices
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that the FLR was in a group. The purpose of this phase was to 
relate the fuzzy set on the left-hand side with those at the right. 
Consequently, the transition probability matrix R was obtained 
using the fuzzy logic relationship group.

R �

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

14

18

4

18
0

3

10

6

10
0

0 0
2

4

...

...

...

� � � �
(22)

The model can be calculated below. For example, when t = 2, the 
modeling value is as follows:

F m X m( ) * * ( ) * .2
3

10

6

10
1

1

10
1365 66501 3� � � � (23)

After obtaining the probability matrix, the initial modeling value 
was calculated using the R matrix above. Table 7 shows the initial 
modeling values.

The next step after obtaining the initial modeling value was the 
adjustment value calculation. Table 8 shows the adjustment values.

After obtaining the adjustment value, the final modeling value was 
calculated by summing the initial scores with that of adjustments. 
Table 9 shows the final modeling values.

Furthermore, the actual data and the final modeling value are 
graphically presented as follows:

Figure 10 shows that the results of the FTSMC model are almost 
close to the actual data. In other words, the difference between 
the actual and the modeled data was not too much. Overall, the 
data from the FTSMC model is good modeling.

3.2.2. Silver price movement with FTSMC model approach
The first step is setting the values of Dmin=14094 and Dmax=28860. 
Then, the values D1=0 and D2=0 are determined, while the 
universal set U is as follows:

U D D D Dmin max� � ��� �� � � �� �
� � �

1 2 14904 0 28860 0

14904 28860

, ,

,  (24)

The universal set U was partitioned into several parts with equal 
intervals (n), using the following Sturges formula:

n � � � �1 3 322 62 6 9543 7, log .  (25)

Then, the length of the interval was determined using the formula:

l
D D D D

n
max min�

� � �

�
�� � � �

�

[( ) ( )]

[ ( )]
.

2 1

28860 0 14904 0

7
2109 4290  (26)

Table 4: Data fuzzification
t Month Actual data Fuzzy data
1 April 17 1347.1 A1
2 May 17 1348.5 A1
3 June 17 1314.0 A1
⋮ ⋮ ⋮ ⋮
60 March 22 1949.2 A7
61 April 22 1911.7 A6
62 May 22 1842.1 A6

Table 5: Fuzzy logic relations
t Month FLR
1 April 17-May 17 A1→A1
2 May 17-June 17 A1→A1
3 June 17-July 17 A1→A1
⋮ ⋮ ⋮
60 March 22-April 22 A7→A6
61 April 22-May 22 A6→A6
62 May 22-June 22 A6→ ∅
FLR: Fuzzy logic relation

Table 6: The fuzzy logic relations group
Serial number FLRG
1 A1→14A1,4A2
2 A2→3A1, 6A2, A3
3 A3→4A3, A4
4 A4→2A4, A5
5 A5→5A5, 6A6
6 A6→5A5,3A6, 2A7
7 A7→2A6, 2A7

FLRG: Fuzzy logic relations group

Table 7: Results of preliminary modeling of gold prices 
with the fuzzy time series Markov chain model
t Month Actual data Initial modeling value
1 April 17 1347.1
2 May 17 1348.5 1365.6650
3 June 17 1314.0 1366.7539
⋮ ⋮ ⋮ ⋮
60 March 22 1949.2 1842.7314
61 April 22 1911.7 1906.7785
62 May 22 1842.1 1846.0314

Table 8: Gold price adjustment results with the fuzzy time 
series Markov chain model
t Month Actual data Adjustment value
1 April 17 1347.1
2 May 17 1348.5 0
3 June 17 1314.0 0
⋮ ⋮ ⋮ ⋮
60 Marcch 22 1949.2 54.2142
61 April 22 1911.7 −54.2142
62 May 22 1842.1 0

Table 9: Final modeling results of gold price using fuzzy 
time series Markov chain model
t Month Actual data Final modeling value
1 April 17 1347.1
2 May 17 1348.5 1365.6650
3 June 17 1314.0 1366.7539
⋮ ⋮ ⋮ ⋮
60 March 22 1949.2 1896.9457
61 April 22 1911.7 1852.5642
62 May 22 1842.1 1846.0314
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The next step is defining the universal set, and it is determined 
as follows:

u u

u
1 2

3

14094 16203 43 16203 43 18312 86

18312 86 204

� � � � � �
�

; . , . ; . ,

. ; 222 29 20422 29 22531 71

22531 71 24641 14

4

5 6

. , . ; . ,

[ . ; . ],

� � � � �
� �

u
u u [[ . ; . ],

[ . ; ]

24641 14 26750 57

26750 57 288607u �  (27)

Furthermore, the fuzzy set for each linguistic variable was obtained 
as follows:

A
u u u u u u u1

1 2 3 4 5 6 7

1 0 5 0 0 0 0 0
� � � � � � �

.

A
u u u u u u u2

1 2 3 4 5 6 7

0 5 1 0 5 0 0 0 0
� � � � � � �

. .

A
u u u u u u u3

1 2 3 4 5 6 7

0 0 5 1 0 5 0 0 0
� � � � � � �

. .

A
u u u u u u u4

1 2 3 4 5 6 7

0 0 0 5 1 0 5 0 0
� � � � � � �

. .

A
u u u u u u u5

1 2 3 4 5 6 7

0 0 0 0 5 1 0 5 0
� � � � � � �

. .

A
u u u u u u u6

1 2 3 4 5 6 7

0 0 0 0 0 5 1 0 5
� � � � � � �

. .

A
u u u u u u u7

1 2 3 4 5 6 7

0 0 0 0 0 0 5 1
� � � � � � �

.  (28)

The next step after defining the linguistic variables was the 
fuzzification process to determine the linguistic interval of the 
actual data. For example, the actual value of the silver price data 
in April 2017 was 17191. This means that the linguistic interval 
variable was in u2 and A2, respectively. Table 10 shows the 
fuzzification process performed.

The linguistic variables defined in each table showed that the actual 
data are represented as a fuzzy set. Furthermore, the relationship 
between the fuzzy sets was determined with the FLR through the 
same process of gold price data, as shown in Table 11.

Table 11 shows the monthly fuzzy set relationship expressed by 
Ai→Aj, where Ai is the left-hand side (LHS), and Aj is right-hand 
side (RHS) of FLR. With the use of the fuzzy logic relationship 
group, the transition probability matrix R was obtained as 
follows,

R �

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

13

15

1

15
0

2

18

13

18
0

0 0 0

...

...

...

� � � �

(29)

The following is the calculation of the modeled output. For 
example, the modeling value of t = 2 gives,

F m X m( ) * * ( ) * .2
2

18

13

18
1

3

18
17326 84121 3� � � � (30)

The probability matrix is obtained by calculating the initial 
modeling value using the R matrix above. Table 12 shows the 
initial modeling value:

The next step after obtaining the initial modeling value is to 
calculate the adjustment value as shown in Table 13.

Furthermore, the final modeling value was calculated by adding 
the initial modeling value with that of adjustment. Table 14 shows 
the final modeling value.

After obtaining the final modeling value, the actual data and the 
final modeling value are graphically presented as follows:

Table 10: Data fuzzification
t Month Actual data Fuzzy data
1 April 17 17191 A2
2 May 17 17368 A2
3 June 17 16568 A2
⋮ ⋮ ⋮ ⋮
60 March 22 25133 A6
61 April 22 23085 A5
62 May 22 21688 A4

Table 11: Fuzzy logic relations
t Month FLR
1 April 17-May 17 A2→A2
2 May 17-June 17 A2→A2
3 June 17-July 17 A2→A2
⋮ ⋮ ⋮
60 March 22-April 22 A6→A5
61 April 22-May 22 A5→A4
62 May 22-June 22 A4→∅
FLR: Fuzzy logic relation

Table 12: Silver price initial modeling using the fuzzy time 
series Markov chain model
t Month Actual data Initial modeling value
1 Apr 17 17191 17326.8412
2 May 17 17368 17454.6746
3 Jun 17 16568 16876.8968
⋮ ⋮ ⋮ ⋮
60 Mar 22 25133 23898.2571
61 Apr 22 23085 25615.4489
62 May 22 21688 23385.8571

Table 13: Silver price adjustment with the fuzzy time 
series Markov chain model
t Month Actual data Adjustment value
1 Apr 17 17191
2 May 17 17368 0
3 Jun 17 16568 0
⋮ ⋮ ⋮ ⋮
60 Mar 22 25133 1054.7142
61 Apr 22 23085 −1054.7142
62 May 22 21688 −1054.7142
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Figure 10: Graph of gold price actual data and FTSMC modeling results

Figure 11: Graph of silver price actual data and modeling results

Based on Figure 11, the model results using FTSMC are almost 
close to the actual data. In other words, the difference between 
the actual and the modeled data was not too much. Therefore, 
the data from the FTSMC model results were good in modeling.

3.2.3. Palladium price movement with FTSMC model approach
The first step is setting the values of Dmin=817 and maximum 
Dmax=2935.5, followed by determining the value of D1=0 and 
D2=0. The universal set U is expressed as follows:

U D D D Dmin max� � ��� �� � � �� �
� � �

1 2 817 0 2935 5 0 5

817 2936

, , . .

,  (31)

The universal set U is partitioned into several parts with equal 
intervals (n), using the following Sturges formula:

n � � � �1 3 322 62 6 9543 7, log . (32)

Furthermore, the length of the interval is determined using the 
formula below:

l
D D D D

n
max min�

� � �

�
�� � � �

�

[( ) ( )]

[ . . ( )]
.

2 1

2935 5 0 5 817 0

7
302 7143  (33)

The next step is defining the universal set; hence the following 
were obtained:

u u

u
1 2

3

817 0000 1119 7140 1119 7140 1422 4290

1422 4

� � � � � �
�

. ; . , . ; . ,

. 2290 1725 1430 1725 1430 2027 8570

2027 8570 23

4

5

; . , . ; . ,

[ . ;

� � � � �
�

u
u 330 5710 2330 5710 2633 2860

2633 2860 2936 0000

6

7

. ], [ . ; . ],

[ . ; .

u
u

�

� ]] (34)

The next step is determining the fuzzy set for each linguistic 
variable as follows:

A
u u u u u u u1

1 2 3 4 5 6 7

1 0 5 0 0 0 0 0
� � � � � � �

.

A
u u u u u u u2

1 2 3 4 5 6 7

0 5 1 0 5 0 0 0 0
� � � � � � �

. .

A
u u u u u u u3

1 2 3 4 5 6 7

0 0 5 1 0 5 0 0 0
� � � � � � �

. .

A
u u u u u u u4

1 2 3 4 5 6 7

0 0 0 5 1 0 5 0 0
� � � � � � �

. .

A
u u u u u u u5

1 2 3 4 5 6 7

0 0 0 0 5 1 0 5 0
� � � � � � �

. .

Table 14: Silver price final modeling with fuzzy time series 
Markov chain model
t Month Actual data Final modeling value
1 April 17 17191
2 May 17 17368 17326.8412
3 June 17 16568 17454.6746
⋮ ⋮ ⋮ ⋮
60 March 22 25133 24952.9714
61 April 22 23085 24560.7346
62 May 22 21688 22331.1428
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A
u u u u u u u6

1 2 3 4 5 6 7

0 0 0 0 0 5 1 0 5
� � � � � � �

. .

A
u u u u u u u7

1 2 3 4 5 6 7

0 0 0 0 0 0 5 1
� � � � � � �

.  (35)

After the linguistic variables are defined, the next step is the 
fuzzification process to obtain the linguistic interval of the actual data. 
For example, the actual value of palladium price data in April 2017 is 
823.5, indicating that it is in the linguistic interval and variable u1 and 
A1, respectively. Table 15 shows the fuzzification process performed.

Linguistic variables have been defined in each table for the 
actual data, which are contained in a fuzzy set. The next stage 
is determining the relationship between the fuzzy sets using the 
FLR as employed in the previous gold and silver prices. Table 16 
shows the results obtained.

The fuzzy set relationship per month was expressed by Ai→Aj, 
where Ai is the left-hand side (LHS) and Aj is the right-hand side 
(RHS) of FLR. With the use of fuzzy logic relationship group, the 
transition probability matrix R is obtained as follows,

R �

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

18

19

1

19
0

0
4

6
0

0 0
3

4

...

...

...

� � � �
(36)

The following is the calculation of the modeled output. When 
t  =  2, the modeling value is,

F X m2
4

6
1

2

6
847 05643� � � � �* ( ) * .  (37)

The probability matrix obtained is proceeded by calculating the 
initial modeling value using the R matrix above. Table 17 shows 
the initial modeling value:

After obtaining the initial modeling value, the adjustment value 
was calculated and the result is shown in Table 18.

Furthermore, the final modeling value was calculated by adding 
the initial modeling score with that of adjustment. Table 19 shows 
the final modeling value.

The actual modeling value was presented graphically after 
obtaining final modeling value as follows:

According to Figure 12, the model results using FTSMC are almost 
close to the actual data. This also means that the difference between 
the actual and the modeled data is not too much; hence the results 
were considered to be good for modeling.

3.3. Accuracy Level and Model Output Analysis
After the modeling, the MAE, RMSE, and MAPE values were 
calculated to determine the accuracy level. The following is a 
table of accuracy levels:

Based on Table 20, the model of ARFIMA for gold price data 
has smaller model accuracy than all FTSMC models for precious 
metal prices. For example, its MAPE value was 2.93%, indicating 
a very good accuracy since the MAPE value is <10%. In other 
words, it means gold has a long memory effect, unlike silver 
and palladium. Gold is considered more stable as the medium of 

Table 15: Fuzzification data
t Month Actual data Fuzzy data
1 April 17 823.5000 A1
2 May 17 817.0000 A1
3 June 17 841.5000 A1
⋮ ⋮ ⋮ ⋮
60 March 22 2261.5800 A5
61 April 22 2320.5000 A5
62 May 22 1999.5300 A4

Table 16: Fuzzy logic relations
T Month FLR
1 April 17-May 17 A1→A1
2 May 17-June 17 A1→A1
3 June 17-July 17 A1→A1
⋮ ⋮ ⋮
60 March 22-April 22 A5→A5
61 April 22-May 22 A5→A4
62 May 22-June 22 A4→∅
FLR: Fuzzy logic relation

Table 17: Palladium price initial modeling with fuzzy time 
series Markov chain model
t Month Actual data Initial modeling value
1 April 17 823.5000
2 May 17 817.0000 847.0563
3 June 17 841.5000 840.8984
⋮ ⋮ ⋮ ⋮
60 March 22 2261.5800 2295.1514
61 April 22 2320.5000 2292.2428
62 May 22 1999.5300 2324.9761

Table 18: Palladium price adjustment results with the 
fuzzy time series Markov chain model
t Month Actual data Adjustment value
1 April 17 823.5000
2 May 17 817.0000 0
3 June 17 841.5000 0
⋮ ⋮ ⋮ ⋮
60 March 22 2261.5800 −151.3571
61 April 22 2320.5000 0
62 May 22 1999.5300 −151.3571

Table 19: Palladium price final modeling with fuzzy time 
series Markov chain model
t Month Actual data Final modeling value
1 April 17 823.5000
2 May 17 817.0000 847.0563
3 June 17 841.5000 840.8984
⋮ ⋮ ⋮ ⋮
60 March 22 2261.5800 2143.7942
61 April 22 2320.5000 2292.2428
62 May 22 1999.5300 2173.6190
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exchange because it is correlated with previous data, but silver 
and palladium have a weak correlation with the previous ones. It 
is important to note that the FTSMC also models precious metal 
data properly, indicating that it is crucial in modeling precious 
metal time series data.

Gold price movements with a long memory data effect provide 
an investment advantage because it serves as an asset that tends 
to be stable, easy to liquidate in cash, free of interest, has a role 
as an emergency fund, and protects wealth’s value. In addition, 
its stable nature due to the effect of long memory data makes 
gold an alternative long-term investment even though it incurs 
administrative and custody costs in the process. Meanwhile, 
the price movements of silver and palladium do not have a long 
memory data effect. This is presumably because their prices are 
not affected by the economy. As one of the basic materials for 
jewelry, price movements of silver and palladium are momentarily 
influenced by demand.

4. CONCLUSION

Precious metal is one of the most important assets in investment. 
Its price movements serve as a guide for investors when planning 
and making decisions to increase profits and prevent losses. Gold 
has a long memory effect, as shown by the ACF plot, which slowly 
decreases over time, but silver and palladium prices do not have 
a long memory effect. These data were implemented with a long 
memory effect by ARFIMA and the FTSMC model for a numerical 
approach to predict the price movement; both techniques were 
close to the actual data, as evidenced by each model’s accuracy 
value. When the ARFIMA was used to model gold price movement 
data, the smallest error values were obtained as measured by 
MAE, RMSE, and MAPE, making it a better approach compared 
to others. Also, the gold price movement has long-term stability 

when compared to the other two precious metals because the gold 
price contains a long memory effect. This stability was maintained 
by gold during and after an economic crisis. These findings need 
to be used by capital market practitioners as a basis for developing 
portfolio strategies in order to consider the long-memory nature 
of the gold price movement when making investment decisions.
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