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ABSTRACT

The rapid spread of the COVID-19 pandemic has severely impacted many sectors including the electricity sector. The restrictions such as lockdowns, 
remote-working, and -schooling significantly altered the consumers’ behaviors and demand structure especially due to a large number of people 
working at home. Accurate demand forecasts and detailed production plans are crucial for cost-efficient generation and transmission of electricity. 
In this research, the restrictions and their corresponding timing are classified and mapped with the Turkish electricity demand data to analyze the 
impact of the restrictions on total demand using a multiple linear regression model. In addition, the model is utilized to forecast the electricity 
demand in pandemic conditions and to analyze how different types of restrictions impact the total electricity demand. It is found that among three 
levels of COVID-19 restrictions, age-specific restrictions and the complete lockdown have different effects on the electricity demand on weekends 
and weekdays. In general, new scheduling approaches for daily and weekly loads are required to avoid supply-demand mismatches as COVID-19 
significantly changed the consumer behavior, which appears as altered daily and weekly load profiles of the country. Long-term policy implications 
for the energy transition and lessons learned from the COVID-19 experience are also discussed. 

Keywords: COVID-19, Pandemic, Electricity Demand, Daily Demand Curve, Restrictions, Regression 
JEL Classifications: Q47, E17, Q40.

1. INTRODUCTION

The impact of COVID-19 on the economy, industry, health, 
education, and other critical sectors are obvious and the damage 
will need to be recalculated when the pandemic period is over. 
The demand for electric energy is highly impacted as a result of 
restrictions and the changing habits of the users. Electricity is a 
commodity that is delivered to end-users passing through planning, 
generation, and transmission steps. The fuel and resources are 
planned based on the demand projections, they are ordered and 
transported if necessary, and the power plants are scheduled 
to run to generate the electricity that will be injected into the 
transmission system. However, the planning is triggered using 
the forecasted demand. The electricity demand forecasting thus 
has been a subject for quite a number of studies in the literature. 
However, the proposed forecasting methods use past data that has 

cyclic behaviors and trends, assuming that the demand will follow 
a similar pattern. The demand still needs to be forecasted under 
the presence of COVID-19 restrictions as the electricity is still 
generated to meet the demand. It has been quite some time since 
the pandemic period started and the post-pandemic consumption 
pattern is still unknown. Hence, electricity forecasting models, 
considering altered consumption behaviors of both household and 
industrial consumers, are needed to estimate demand accurately.

Electricity demand depends on industrial facilities and household 
consumption behaviors. There is a sharp decline in electricity 
demand due to the pandemic measures. The sudden stop of the 
production of large companies in the industrial sector, such as 
iron-steel, glass, ceramics, and cement factories, has a significant 
effect on this decline. The limitations on the operation of industrial 
facilities, schools, shopping centers, and other non-critical 
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infrastructure have a significant potential to change the demand 
structure. Institutions such as the IMF and the World Bank have 
stated that they expect a global recession (IMF, 2020). Hence, it 
may be assumed that the decreases in production will continue, 
affected by the decreases in demand in other sectors. For instance, 
electricity demand in China decreased by 12% in February 2020, 
by about 28% in Italy in April 2020, and by 13.5% in Spain from 
March 14 to April 30, 2020; and the demand in these countries 
started to recover slowly when confinement measures were eased 
(EIA, 2021; Santiago et al., 2021). The restrictions to decrease 
mobility, national and international travel ban and the increasing 
rate of remote working shifted demand in a typical day and 
week. The daily demand curves on weekdays and weekends 
are significantly affected by the changing consumer behaviors. 
Considering such unexpected measures, the COVID-19 pandemic 
should be considered as a crisis and the demand pattern during 
the pandemic is expected to be different than previous periods. 

Electricity demand needs to be forecasted considering the changing 
structure of the demand drivers and the restrictive limitations of 
the pandemic. Although the impact of the pandemic is obvious, 
the demand still needs to be forecasted for market operations and 
system planning purposes. There are studies in the literature for 
electricity demand forecasting, however, they are tailored for normal 
circumstances with no restrictions. Hence, the electricity demand 
forecasting addressing the long- and short-term effects of COVID-19 
on electricity demand rate is a research gap in the literature. 

Linear models and time series methods are commonly used in 
the literature for demand forecasting. Suganthi and Samuel, 2012 
present the literature on forecasting methods including Artificial 
Neural Networks (ANN), Genetic Algorithms (GA), Support 
Vector Machines (SVM), Particle Swarm Optimization (PSO), 
and other numerical methods. ARMA and ARIMA models are 
also used to include the stochastic effects in demand forecasting. 
A detailed description of the literature on forecasting methods is 
also given in (Yukseltan et al., 2017).

The impact of temperature on electricity demand depends on the 
infrastructure and heating resources, and the temperature is used 
to increase the forecast accuracy. Different aspects of the influence 
of the temperature on the electricity demand have been analyzed 
in (Bašta and Helman, 2013; De Felice et al., 2015; Hor et al., 
2005; Islam et al., 1995; Lusis et al., 2017; Momani, 2013; Taylor, 
2012). The seasonal cycles determine the impact of temperature on 
electricity demand especially if the electricity is used for heating 
and cooling needs. On the other hand, it is shown that relative 
humidity, solar radiation, cloudiness, and other climatic parameters 
can have a role in demand forecasting. Different studies, classified 
according to their forecasting methods, are given in Table 1. The 
methodologies can be classified as time series analysis, statistical 
methods, surveys, ANN and simulation, heuristic approaches, and 
temperature-based methods. The main assumptions in all of these 
studies are to forecast the demand based on normal conditions 
without any pandemic restrictions.

Methods for forecasting electricity demand may be roughly 
classified as the ones that are “autoregressive”, i.e., the ones using 

Table 1: Overview of the forecasting methods and related 
resources
Methods Sources
Time Series Analysis (Conejo et al., 2005), (Suganthi and Samuel, 

2012), (Clements et al., 2016), (Niu et al., 
2010), (Andersen et al., 2013), (Lo and Wu, 
2003)

Statistical Methods (Vilar et al., 2012), (Taylor, 2010), (Fan 
and Hyndman, 2012), (Wang et al., 2012), 
(Hyndman and Fan, 2010), (McSharry et al., 
2005), (Taylor, 2003), (Chakhchoukh et al., 
2011), (Apadula et al., 2012), (Ren et al., 
2016), (Filik et al., 2011)

Surveys (Dyner and Larsen, 2001), (Suganthi and 
Samuel, 2012), (Hahn et al., 2009), (Conejo 
et al., 2005)

ANN and Simulation (Zhang and Dong, 2001), (Wang and 
Ramsay, 1998), (Srinivasan et al., 1995) 

Heuristic Approaches (AlRashidi and EL-Naggar, 2010), (Wang  
et al., 2012), (Zhu et al., 2011), (Azadeh  
et al., 2007), (Pai and Hong, 2005)

Temperature-based 
Methods

(Taylor and Buizza, 2003), (De Felice et al., 
2013), (De Felice et al., 2015), (Crowley 
and Joutz, 2003), (Lusis et al., 2017), (Islam 
et al., 1995), (Hor et al., 2005), (Momani, 
2013), (Bašta and Helman, 2013)

electricity data only, and the ones that use exogenous regressors. 
For long-term forecasts (over a few years’ horizon) these 
exogenous regressors should include economic and demographic 
growth parameters. In cases where electricity consumption for 
heating and cooling is negligible, linear regression, including 
sinusoidal functions, captures cyclic variations in the electricity 
consumption arising from illumination demand and economic 
activities; and it provides reliable medium-term forecasts 
(over a year’s horizon) (Yukseltan et al., 2017). In cases where 
electricity is heavily used for heating and cooling, deviations 
from comfortable temperatures should be added as an exogenous 
regressor. ARMA type time series models are useful for following 
short-term variations (over a horizon of a few days) faithfully. 
ARMA models can be incorporated with linear models to obtain 
sharp forecasts taking into account temperature effects or other 
irregular variations (Yukseltan et al., 2020). These methods that 
have been tested under “normal” conditions, may fail to explain 
sudden variations due to unexpected major events, such as global 
changes in lifestyles and in economic activities that have been in 
force starting from March 2020, due to the COVID-19 pandemic. 
The effects of COVID-19 on the economy, energy sector, and 
environment have been analyzed in various papers such as (Abu-
Rayash and Dincer, 2020; Bahmanyar et al., 2020; Çakmaklı et al., 
2021; Chen et al., 2020; Corpus-Mendoza et al., 2021; Ghiani et al., 
2020; López Prol and O, 2020). 

Previously, authors studied the changes in the electricity 
consumption in Turkey due to COVID-19, during the period 
January-June 2020 (Yucekaya et al., 2020). In that time frame, 
complete lockdowns and various age and sector-dependent 
restrictions were applied during the period March-May 2020. In 
the framework of the project, a population-based index is formed to 
model the effects of restrictions. In a previous paper, a modulated 
Fourier series expansion is used for modeling the decrease in the 
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electricity demand as a function of restrictions (Yukseltan et al., 
2021). In the present work, a binary model for linear regression is 
used and the early detection of the changes in the demand pattern 
is discussed.

The main motivation of this research is to forecast the demand 
under the presence of COVID-19 restrictions. The conditions in 
which the demand for electricity occurs are not the same as they 
used to be due to social distancing, remote working, and closure of 
facilities. The situation can be assumed similar to holiday periods 
in which the electricity demand is nonstandard. 

In this paper, a multiple linear regression model is proposed to 
forecast the total electricity demand for the Turkish Electricity 
Market under the COVID-19 restrictions. The restrictions are 
classified and mapped with the total electricity demand to analyze 
the change in the demand. Then the regression model is utilized to 
estimate the impact of each restriction on the demand. Specifically, 
the electricity consumption of pre-pandemic and pandemic periods 
are compared using average hourly demand rates for weekends and 
weekdays. The proposed regression model satisfactorily explains 
the marginal contribution of each restriction type to demand loss 
for weekends and weekdays. In addition, the proposed model is 
utilized to obtain an importance ranking among the regressors 
in the model. It is found that religious holidays and the effect of 
Monday create the most significant effect on electricity demand 
whereas binary variables indicating day-time hours are the least 
important ones in the model. The proposed methodologies present 
novel approaches to literature and it is conjectured that these 
findings can be generalized to other countries and can be helpful 
to explain changes in electricity demand due to the COVID-19 
pandemic. 

The remainder of the paper is as follows. In Section 2, an overview 
of the Turkish Power market and the impact of COVID-19 on the 
total and sectoral electricity demand are presented. In Section 3, 
a multiple linear regression model, which is proposed to forecast 
the total electricity demand for pandemic and non-pandemic 
conditions, is presented. Section 4 is devoted to the presentation 
of importance ranking among regressors and its implications for 
electricity demand forecasting. Section 5 includes a discussion on 
our results and Section 6 presents the conclusion and suggestions 
for future directions.

2. DATA ANALYSIS AND PROCESSING

Aggregate statistics for the electricity consumption, generation, 
and pricing data for Turkey are released as hourly values by 
Energy Exchange Istanbul (EPIAS in Turkish), the electricity 
system operator of Turkey. In addition, sector-based statistics 
are released by Energy Market Regulatory Authority (EMRA) as 
monthly data. EPIAS data includes hourly demand and generation 
rates, the distribution of total generation by different resources, 
and price information. The present work is based on the data from 
EPIAS and EMRA for the period January-June 2020. The period 
July-December 2020 is also analyzed, but it is not included in this 
paper since the industrial sector started operating and the effects 
of restrictions are not significant for that period. 

The COVID-19 epidemic starting in December 2019 in China, 
progressed rapidly as a pandemic. By March 2020, many European 
countries had applied various social and economic restrictions. An 
extensive database for the timing of the restrictions is available 
at the University of Oxford’s Coronavirus Government Response 
Tracker, together with a contingency index based on the types of 
restrictions (University of Oxford, 2020). Nevertheless, this index 
targets health-related effects and it was found to fail to explain the 
changes in electricity consumption. For the purpose of explaining 
the effects of restrictions on electricity consumption, we formed 
our own contingency indices for Turkey. 

In Turkey, the first COVID-19 case and the first fatality were 
reported on March 11th, 2020, and March 18th, 2020, respectively. 
The first restriction, imposing a stay-at-home requirement for 
people of ages above 65 and below 20, was announced on 
March 21st. Subsequent restrictions are classified as age-based, 
travel-based, sector-based (closure of the noncritical facilities) 
restrictions, and complete lockdowns. A detailed description of 
these restrictions is given below. Level 2 restrictions include the 
shutdown of mostly service industry while Level 3 restrictions 
include the shutdown of the production industry.

2.1. Level 1 (Age-Specific Restrictions)
COVID-19 presents high risk for people above 65, while young 
people may have the infections without showing any symptoms. 
Age restrictions were imposed as stay-home requirements for 
people above 65 and below 20, to diminish health risks for the first 
group and to prevent the spread of the epidemic due to undetected 
positive cases.

2.2. Level 2 (Social Restrictions and Business 
Shutdown)
Social restrictions that were imposed in Turkey starting in April 
2020 included travel restrictions between cities, closing of 
restaurants and cafés, suspension of sports events, online learning 
in schools and universities, and remote working in most offices.

2.3. Level 3 (Lockdowns and Industrial Shutdown)
In Turkey complete lockdowns were imposed during weekends 
and public holidays in April and May 2020. Complete lockdowns 
during the period March-June 2020 included the shutdown of all 
non-critical industries. 

The total demand for the period January-June 2020 is presented 
in Figure 1, together with the timing of the restrictions. The first 
restriction was imposed in March, various types of restrictions 
were imposed in April and May, and the transition to normal life 
started at the beginning of June. During summer 2020, a limited 
form of age-based travel restrictions was applied. Although 
COVID-19 cases started to increase in the fall, no restrictions had 
been imposed until December 2020. Hence, the March-June 2020 
period is selected as the analysis period. A qualitative analysis of 
Figure 1 reveals that the total demand decreases gradually as the 
level of restrictions increase and the effects of curfews are more 
dominant compared to others. Creating classification scenarios as 
low, medium, and high level is a useful method for more effective 
investigation and analysis of the impact of these restrictions. 
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Furthermore, the sudden decline in total demand observed at the 
end of May corresponds to the Ramadan Feast.

The sudden decline in demand is expected to affect the revenues of 
electricity producers significantly, and if the pandemic process is 
prolonged, it is worried that this will have permanent consequences 
in the medium term. Declining demand is expected to lead to lower 
prices for the market under normal conditions due to the merit-
based market system. In this case, the production of more costly 
power plants such as those using natural gas is likely to decrease. 
Total electricity demand in Turkey in January-June 2019 and 2020 
is shown in Figure 2.

2.4. Effect of COVID-19 Restrictions on Electricity 
Demand of Different Sectors
Examining sector-based electricity consumption is essential to 
reveal the underlying reasons for the change in aggregate demand. 

Because, while total demand has increased or decreased, sector-
based demand increases or decreases regardless of the total. 
Sectoral consumption data for Turkey’s electricity market is 
published as monthly sector reports by Energy Market Regulatory 
Authority (EMRA). Since there are no more detailed data such 
as hourly and daily demand in the published reports, monthly 
data is studied. Monthly electricity consumption data is collected 
from the monthly sector reports for the last 5 years (until June 
2020), and sector-based increases and decreases are examined 
(EMRA, 2020). The total consumption is divided into five sectors 
in the published reports, namely, lighting, residential, industrial, 
agricultural irrigation, and commercial. The residential, industrial, 
and commercial sectors, which are most affected during the 
pandemic, are examined. The consumption data of these three 
sectors observed in the January-June periods of the last 5 years 
are given in Figures 3-5.

Figure 1: COVID-19 restrictions and total electricity demand in Turkey (March-June, 2020) (Yukseltan et al., 2021)

Figure 2: Total electricity demand in Turkey 2019-2020 (EPIAS, 2020)
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Figure 3: Commercial consumption between January-June 2016-2020

Figure 5: Residential consumption between January-June 2016-2020

Figure 4: Industrial consumption between January-June 2016-2020

As seen in Figure 3, in March, April, and May 2020, the commercial 
consumption has gone out of the trend seen in the previous years 

and has shown a severe decrease. Despite the normalization that 
started in June, commercial electricity demand remained below 
the previous 4 years.

As seen in Figure 4, industrial consumption has shown a sharp 
decline in April and May 2020. Consumption in March 2020 
remained above the consumption of March 2019. The reason for 
this is that no restriction decision was taken for the industrial sector 
in March 2020. In June 2020, a serious increase was observed 
in contrast to the trend seen in previous years. This is because 
companies that had to suspend production due to the restrictions 
in April and May, with the start of normalization as of June, are 
assumed to have produced above their regular routines to meet 
the demand that they could not meet before.

As seen in Figure 5, residential consumption leaped out of the trend 
observed in previous years in April 2020 and followed a similar 
path to the trend of previous years in the other months of 2020. 
Based on this, it can be said that there is no serious increase in 
residential consumption except in April. The reason for this can 
be shown as the fact that the curfews in Turkey do not cover long 
periods but short periods such as weekends, and the first curfew 
was implemented in April.

Finally, taking the year 2019 as a reference, the way the demand 
changed in March, April, May, and June 2020 is calculated for 
all three sectors. Percentage changes obtained as a result of these 
calculations are presented in Table 2.

As seen in the consumption change percentages given in 
Table 2, commercial consumption is most affected by the 
pandemic restrictions. Even in June, when the normalization 
started, a sharp decrease of approximately 21% was observed 
in commercial consumption compared to the previous year. 
Industrial consumption is the most affected sector after commercial 
consumption. Industrial consumption was not affected by the 
restrictions in March, showed a significant decrease in April and 
May. Afterward, a recovery effect with a significant increase 
of 17% is observed with normalization in June. Household 
consumption showed no unusual increase except in April but 
increased in all months compared to the previous year. As a result, 
it is understood that the significant decrease observed in total 
demand originates from industrial and commercial consumption, 
and even though household consumption has increased, these two 
sectors have dominated this increase.

3. FORECASTING DEMAND USING 
MULTIPLE LINEAR REGRESSION

Regression models are widely used in the literature for electricity 
demand forecasting since they are easy to implement and interpret 
(Kuster et al., 2017; Singh and Khatoon, 2013). In this study, a 
multiple linear regression model is developed to forecast the future 
demand and to describe the effects of nation-wide restrictions on 
the electricity demand of Turkey. To this end, hourly electricity 
consumption data from January 1, 2018 to June 30, 2020 is 
collected. To model the effects of restrictions, binary variables for 
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each time period are employed. When a restriction is present, its 
value is set to 1 and 0 otherwise. Similarly we employ Ri, i=1,2,3 
for R1 is the curfew for age groups young and old citizens (ages 
under 20 and over 65), R2 the is full curfew, R3 is the intercity 
transportation ban, and ϵ is the residual term. As full curfew 
includes all age groups, values of other restriction variables are 
set to 0 when R2 is 1. Likewise, an intercity transportation ban is 
a more comprehensive ban than an age-group-specific curfew. 
Hence, R1=0 whenever R3=1. These variable configurations yield 
orthogonal regressors in our model.

The resulting model’s coefficient of determination, R2, value is 
0.453. To increase the model’s ability to explain variability in the 
dependent variable, more regressors are introduced into the model. 
Binary variables hi, i={0,…,22} indicates hours of the day, hi=1 
if it is the i-th hour of the day and 0 otherwise. wdi,i={1,…,6} 
represents weekdays from Monday to Saturday respectively, wdi=1 
if it is the i-th day of the week, 0 otherwise. mi,i={1,…,11} stands 
for months of the year, mi=1 if it is the i-th month of the year and 0 
otherwise. dt is a day-time indicator which depends on the season. 
Note that the binary variables hi, wdi and mi are presented in a 
way that does not cover the last period of their own. Presenting 
the last periods becomes trivial since these variables are mutually 
exclusive within themselves, and they cover the whole dataset; in 
other words, they create linear dependency. dt=1 if it is daytime 
and 0 otherwise. Time periods assumed as daytime or nighttime 
to determine the value of dt in different seasons are given in 
Table 3. hdi, I ∈{p,r} represents public (i=p) and religious (i=r) 
holidays. It is known that during public and religious holidays, 
electricity demand significantly drops as manufacturing facilities 
are closed. hdi=1 if that day is an i-type holiday and 0 otherwise. 
nc stands for number of cases for a given date. pr is another binary 
variable representing post-restriction days, i.e., pr=1 if the date 
is later than May 31.

In order to understand autocorrelation in the electricity demand, the 
autocorrelation coefficient for the hourly electricity demand data 
for the lags of 24 and 168 periods is calculated. The autocorrelation 
value of 24-period lag is estimated as 0.83 as shown in Figure 6a, 
indicating the daily periodicity of electricity demand. For weekly 
cycles, the autocorrelation coefficient with a lag of 168 periods 

is estimated as 0.841 as shown in Figure 6b. These results imply 
daily and weekly periodicity in the electricity demand. 

To include daily and weekly cycles, a sinusoidal regression model 
similar to Shah et al., 2019 is considered. In the sinusoidal 
regression, a time index t ∈ {1,…}, where 1 represents the earliest 
date is created. In addition to these cyclic variables, covariates for 
their interactions of regressors are added to the model. Specifically, 
the interaction term between full curfew and daily cycles (daily 
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added to the model. The resulting model has an adjusted R2 of 
0.854, and the F-statistic of the model is 2375 (P-value smaller 
than 2.2e-16).

In order to evaluate the possible nonlinear relationship between 
dependent variable and regressors, Box-Cox transformation is 

considered that is given below: D Dtr �
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package of R Gui that computes the optimal λ value using the 
log-likelihood function (Venables and Ripley, 2002). This routine 
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exact log-transformation, log-transformation is chosen since it is 
close to 0. The summary statistics indicate that taking the natural 
logarithm increased the adjusted R2 to 0.8649, and the model could 
explain a large proportion of the variation in the dependent 
variable. The resulting mathematical model of the log-linear 
multiple regression model is given below:
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The F-statistic of the model is 2597 (P-value smaller than 2.2e-16). 
The summary statistics indicate strong overall significance for 
the model. In this model, there are 56 regressors. To simplify the 
model, the stepwise regression method is employed. 

Stepwise regression is the process of repetitively introducing or 
eliminating regressors by obtaining a subset of predictors resulting 
in the best performing model (Kassambara, 2017). It is recognized 
as an application of feature selection in the machine learning 

Table 2: Percentage changes of industrial, commercial, 
and residential consumption compared to the same month 
of the previous year 

Industrial Commercial Household
March 5.48% −16.58% 1.43%
April −22.39% −31.67% 10.86%
May −22.96% −34.30% 4.03%
June 16.97% −20.90% 3.08%

Table 3: Criteria to determine that if a given hour is in 
daytime or nighttime
Seasons Months Daytime Nighttime
Winter Dec-Feb 08:00-18:00 19:00-07:00
Spring Mar-May 07:00-19:00 20:00-06:00
Summer June-Aug 05:00-20:00 21:00-04:00
Fall Sep-Nov 06:00-19.00 20:00-05:00
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Figure 6: Autocorrelation plots of hourly demand data with a maximum delay of 24 (a) and 168 (b)

literature (Alpaydin, 2020). There are three strategies of the 
stepwise regression method: forward selection, backward selection, 
and stepwise selection (Bruce and Bruce, 2017; James et al., 
2013). For all strategies, different criteria, such as R2, Akaike 
Information Criterion (AIC), Bayesian Information Criterion 
(BIC), are suggested for addition or elimination operations on 
regressors. AIC and BIC are extended versions of the log-likelihood 
statistic of the regression model. They include penalizing terms in 
favor of model simplification (Alpaydin, 2020). Chakrabarti and 
Ghosh, 2011 state that the BIC is more appropriate in choosing 
the correct model, while the AIC is more suitable for choosing 
the best model to forecast future observations. In our study, thus, 
the backward selection with the AIC criterion is employed to 
simplify our regression model with 56 regressors. To implement, 
the step routine in R Gui (R Core Team, 2020) is utilized. The 
backward selection of this routine initially takes all variables into 
account. Then, repeatedly extracts the predictor that made the least 
contribution to the model in terms of AIC. The program routine 
stops when removing any regressor does not improve (decrease) 
the AIC any further. After applying the stepwise regression with 
backward selection, the following regression model is obtained:
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The adjusted R2 value of the model is 0.865, meaning that the 
model could explain a large proportion of the variation in the 
dependent variable. Although the stepwise regression improved 
the adjusted R2 value marginally, it simplified the initial model 
with 56 regressors to the stepwise model with 52 regressors. Note 
that stepwise regression removed the statistically insignificant 
regressors only. The residual standard error is 0.058 which shows 

that the model fits the data very well. The F-statistic is 2697 with a 
P-value smaller than 2.2e-16, indicating strong overall significance 
for the model. The estimates of regression coefficients are given 
in Table 4 and all the covariates in this table are statistically 
significant with P-values of zero.

To visualize the efficiency of the regression model, a line plot 
depicting actual and fitted electricity demand is provided in 
Figure 7. As can be seen from our regression fit plot, the model 
captures cyclic demand patterns as well as sudden drop due to 
COVID-19 restrictions starting from the middle of March, 2020.

4. APPLICATIONS OF THE REGRESSION 
MODEL

In this section, two applications of the regression model presented 
above are provided: First, the details of the forecasting study and 
tests for measuring the predictive power of the model are provided. 
Second, a discussion on the importance ranking of independent 
variables for explaining the electricity demand is presented.

4.1. Demand Forecasting Under COVID-19 
Restrictions
In order to forecast hourly electricity demand under COVID-19 
restrictions, the model suggested above is subjected to tests for 
its prediction accuracy. First, the error terms are analyzed for the 
existence of any bias from 0. As can be seen from Figure 8, the 
error terms of the model have a symmetric distribution around 
0 in the periods before and after COVID-19. This indicates 
the success of the regression equation for modeling the hourly 
electricity demand before COVID-19 period and the efficiency 
of binary variables to explain the effect of COVID-19 on hourly 
electricity demand.

In order to test the predictive power of the model, two types of 
tests are performed. First, k-fold cross-validation is implemented 
on the whole time series, including the pandemic period. In the 
k-fold cross-validation, first, the data set is split into k random 
subsets. One of the k subsets is chosen as a test set and the model 
is trained on the remaining parts of the data. The trained model is 
used to generate predictions for the test set and the prediction error 
is computed. These steps are repeated until each of the k subsets 
is used as a test set. As an accuracy measure, the average of the 
prediction errors of k test sets is calculated. In this study, k is set to 
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Figure 7: Actual demand vs. fitted values of Regression Model Figure 8: Residual terms of the Regression Model for before and 
during COVID-19 restrictions

Table 4: The estimates of the coefficients of each independent variable obtained from stepwise regression (P-values are 
omitted as they are all equal to 0) 
Variable Estimate Variable Estimate Variable Estimate
β0 10.3800 h13 0.0501 m3 −0.0481
R1 −0.0548 h14 0.0709 m4 −0.0732
R2 −0.1416 h15 0.0717 m5 −0.0757
R3 −0.0896 h16 0.0825 m6 −0.0211
h0 −0.0589 h17 0.0955 m7 0.0986
h1 −0.1108 h18 0.1020 m8 0.0898
h2 −0.1480 h19 0.1039 m9 −0.0110
h3 −0.1733 h20 0.0912 m10 −0.1023
h4 −0.1846 h21 0.0679 m11 −0.0567
h5 −0.1868 h22 0.0417 dt −0.0191
h6 −0.1781 wd1 0.1113 hdp −0.1056
h7 −0.1321 wd2 0.0967 hdr −0.3068
h8 −0.0215 wd3 0.0594 nc 0.0000
h9 0.0372 wd4 0.0574 pr −0.0115
h10 0.0550 wd5 0.0813 dt −0.0191
h11 0.0698 wd6 0.0769 h
h12 0.0396 m1 0.0146 0
nc 0.0000 pr −0.0115
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10, and the prediction errors are measured using Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) coefficients. In 
our tests, RMSE and MAE values are found to be 0.058 and 0.046, 
indicating the strong predictive power of our model.

Second, the prediction performance of the proposed model is 
tested using a rolling horizon approach. Specifically, data until 
the start of the COVID-19 pandemic is taken as a training set, 
which consists of data starting from January 1, 2019 until the first 
pandemic restriction is applied. The test set consists of data starting 
from the start of the pandemic restrictions. Demand forecasts are 
calculated for the 1st week of the test set using the trained model. 
Afterward, the training set is extended with the actual demand of 
the forecasted week, and after training, the regression model is 
used to forecast the 1st week of the test set. The first restriction 
(curfew for people over 65) is applied on March 21, 2020 at 0:00. 
Therefore, the first training set range is January 1, 2019-March 20, 
2020, and the range of the first test set is March 21, 2020- March 
27, 2020. The second training set range is January 1, 2019- March 

27, 2020, and the second test set range is March 28, 2020-April 
3, 2020. In this manner, with 1-week incremental expansions, 14 
different training and test sets are formed. The Mean Absolute 
Percentage Error (MAPE) values for each of the 14 steps are 
given below:

The mean MAPE value of the 14 steps is 7.6. As seen in Figure 9, 
however, the MAPE value of the first step, 27.3, is too high 
compared to others and raises the average. This is because there 
is no data regarding the pandemic period in the first training set. 
Thus, it may be unfair to include the MAPE value of the first 
step in the average. If we exclude it, the mean MAPE value of 
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Figure 9: Forecast errors for hourly electricity demand

Table 5: Effects of restrictions on electricity demand for weekends and weekdays, empirical vs. modelled results 
Restrictions Model Fit Empirical

Weekdays Weekends All Days Weekdays Weekends All Days
Level 1 8.1% 8.2% 7.6% 7.4% 5.6% 6.4%
Level 2 4.8% 5.5% 2.8% 5.6% 5.0% 3.9%
Level 3 5.3% 5.4% 13.6% 4.7% 11.9% 14.5%
Total loss 18.2% 19.2% 24.0% 17.8% 22.5% 24.8%

the 13 steps reduces to 6.09. Note that before calculating MAPE, 
the predicted values are transformed to their actual magnitude by 
taking natural exponential.

The effects of restrictions are measured for weekdays and weekends 
separately, as well as for all days, using the proposed model, and 
these are compared with the empirical effects as presented in 
Table 5. These results show that age-specific restrictions (Level 
1) have a larger effect on weekdays whereas complete lockdown 
(Level 3) has a larger effect on weekends. The relative effects of 
restrictions on all days and the total demand losses are closely 
estimated by the proposed model. The only important difference 
between model fit and the empirical results is the effect of Level 
3 lockdown on weekends. A closer look at the results reveals that 
the main difference between the empirical results and the model 
partly stems from the transition periods from Level 3 lockdown 
to normalization. In addition, Turkey applied a softer version of 
Level 3 restrictions in the second half of May 2020 which altered 
the hourly consumption pattern. We find that the model’s fit from 
May to July gets significantly poorer compared to April, the 
beginning of Level 3 restrictions.

The effects of restrictions on the electricity demand over hours of 
the day are also shown in Figure 10, where the significant impact 
of complete lockdown and industrial shutdown (Level 3) is clearly 
observed, especially during the daytime.

4.2. Importance Ranking of Regressors
In the regression model, electricity demand is forecasted based on 
the future values of covariates in the model. However, future values 
of independent variables are also subject to uncertainty and their 

actual values can be different than the anticipated values at the time 
of estimation. Therefore, in regression modeling, it is essential to 
determine the sensitivity of the estimated value to small changes 
in the regressors. This sensitivity information is analyzed through 
different regression statistics in the literature. One of the common 
ways to do so is using standardized regression coefficients. 

Coefficients of a regression model are affected by the magnitudes 
of the values of each covariate. Therefore, it is impossible to 
assess the importance of a regression variable within the model 
by just looking at its regression coefficient. This problem can 
be eliminated by applying Z-transform to each covariate before 
including it into the regression model. The resulting regression 
coefficient is called standardized regression coefficients and they 
are recognized to be an efficient tool for analyzing the sensitivity 
of the estimated value to each regressor. Hekimoğlu and Barlas 
(2016) utilize standardized regression coefficients’ absolute values 
to calculate the most important regressor in regression models. In 
addition to its magnitude, the sign of a standardized regression 
coefficient indicates if the estimate will increase when the value of 
the regressor is found to be higher. In this study, their approaches 
are followed to obtain an importance ranking of regressors for 
the estimated electricity demand. To this end, normalized values 
of each variable and the standardized regression coefficients are 
calculated. Then, all regressors are ordered with respect to the 
magnitude of the regression coefficient and indexed starting from 
1. Standardized regression coefficients and the importance ranking 
of all regressors are given in Table 6.

Our results indicate that hd tr ,cos
2

168

��
�
�

�
�
� , wd1 are the most 

important regressors in the model. hdr represents the religious 
holiday within a year and the electricity demand severely drops 
during those days since almost all industrial and commercial 
facilities are shut down. As expected, its coefficient is found to 
be negative. Interestingly, the effect of public holidays on the 
demand estimate is found to be much smaller (ranked 27th) in 
the model. This can be attributed to the fact that some facilities 
might still be running and consuming electricity during public 
holidays without much resistance from their employees. The 
second most important regressor is the cosines function reflecting 
the importance of the weekly cycles within the model. The third 
most important regressor in the model is the binary variable 
representing the Mondays in the model. This can be attributed to 
the fact that all facilities start working on the 1st day of the week; 
hence, on that day the electricity consumption is significantly 
elevated compared to the other days of the week. Interestingly, 
the second most important weekday is Tuesday in our model 
(ranked 8th). The combined effect of these 2 days is dubbed 
start-of-the-week effect in our analysis. 
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Table 6: Standardized regression coefficients of the regression model and their importance ranking
Variable Standardized 

Regression 
Coeff.

Importance 
Ranking

Variable Standardized 
Regression Coeff.

Importance 
Ranking

R1 −0.0600 39 h_{21} 0.0851 32
R2 −0.1410 18 h_{22} 0.0525 42
R3 −0.1108 26 wd1 0.2451 3
h0 −0.0748 36 wd2 0.2102 8
h1 −0.1410 17 wd3 0.1264 21
h2 −0.1891 9 wd4 0.1239 23
h3 −0.2223 7 wd5 0.1795 10
h4 −0.2379 5 wd6 0.1713 12
h5 −0.2421 4 m1 0.0279 47
h6 −0.2325 6 m3 −0.0887 31
h7 −0.1756 11 m4 −0.1385 19
h8 −0.0366 46 m5 −0.1453 15
h9 0.0370 45 m6 −0.0400 43
h10 0.0588 40 m7 0.1576 14
h11 0.0773 35 m8 0.1435 16
h12 0.0391 44 m9 −0.0172 48
h13 0.0529 41 m10 −0.1633 13
h14 0.0801 34 m11 −0.0892 30
h15 0.0822 33 dt −0.0604 38
h16 0.0973 28 hd_p −0.0981 27
h17 0.1152 24 hd_r −0.2986 1
h18 0.1249 22 nc −0.0963 29
h19 0.1287 20 pr −0.0130 49
h20 0.1138 25
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 t
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Figure 10: Effects of restrictions on electricity demand for  
different hours

The least important regressors in the model are the binary variables 
for daytime hours. Specifically, variables hi,i=9,10,…,16 are 
ranked between 28th to 45th with positive regression coefficients. 
Positivity of the regression coefficients is expected as electricity 
consumption significantly increases during the daytime. On the 
other hand, low ranks imply that there is not much difference 
between hours of a day and other effects are more important for the 
electricity demand estimation. Note that the sensitivity of estimated 

demand to regression covariates not only provides intuition into 
the regression model but also indicates the consumption routines 
and lifestyles of Turkish electricity consumers.

5. RESULTS AND DISCUSSION

In this study, the problem of forecasting hourly electricity demand 
under COVID-19 restrictions is analyzed using a sinusoidal 
regression model extended with a binary covariate for each type 
of restriction. The results indicate that the regression model has 
a forecast accuracy of 6% for the hourly electricity demand. The 
forecast accuracy is found to be low (27%) in the 1st week of 
the COVID-19 restrictions. Then the regression model learns the 
effect of restrictions on the electricity demand and forecast errors 
fluctuate around 6.07% for the rest of the COVID-19 restrictions. 
In addition to this significant forecast accuracy, it is found that the 
error terms of our regression model have a symmetric distribution 
around 0 which is the same as the pre-COVID-19 period. This 
indicates that the binary variables are successful and efficient 
for grasping the effect of COVID-19 restrictions on electricity 
demand. 

In addition to its predictive accuracy, the regression model 
is utilized to obtain an importance ranking between different 
independent covariates. It is found that the effect of the religious 
holiday, weekly cycles, and Monday effect create the largest 
impact on the hourly electricity demand of Turkey. The importance 
of religious holidays on the hourly electricity demand is easy 
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to interpret as almost all commercial and industrial activities 
stop during those days, significantly lowering the electricity 
consumption of the country. The importance of Mondays stems 
from the fact that the 1st day of the week is the busiest one for all 
business activities driving the electricity consumption in all cities.

In addition to these important variables, it is found that binary 
variables for hours of the day between 9 am and 4 pm are the least 
important regressors in the equation although they are significant 
in the model. This is mainly due to the fact that electricity demand 
during work hours is mainly driven by day-level factors, such as 
religious holidays, day of a week, etc., and consumption during 
the work hours stay stable until the end of the daytime shift. 

It is argued that findings are not only meaningful and important 
for national electricity demand forecasting, but they can also be 
used for forecasting regional electricity demand as they can easily 
be applied to different regions, e.g., city, town, neighborhood, 
etc., of the country. Therefore, these findings are also important 
and provide novel approaches for network management studies 
focusing on regions with smaller grid sizes.

6. CONCLUSION

Electricity is one of the main drivers of the modern economy. Due 
to limitations to store electricity, it needs to be consumed right after 
its generation. This makes the forecasting of electricity demand a 
very critical input for planning operations of utility companies and 
power plants. The electricity demand of a country comes from the 
household, industrial and commercial consumers, hence, is heavily 
affected by their consumption behaviors and routines. 

Recently, COVID-19 has been the main determinant of behavior 
changes of consumers which leads to shifting consumption 
patterns in all countries. As governments apply various restrictions 
to control the spread of the infection in their countries, citizens 
adapted their lifestyles to this new normal. This adaptation 
shifts the electricity consumption pattern of all countries and 
it is important to analyze these pattern changes for forecasting 
electricity demand more efficiently. 

In this study, a log-linear, sinusoidal regression model is proposed 
for forecasting the electricity demand of Turkey during the 
COVID-19 restrictions between March and June 2020. It is 
found that the model, including specific binary variables for 
three types of restrictions in Turkey, forecasts electricity demand 
with a MAPE of 6% during the COVID-19 period. It is found 
that the total demand falls 7.6%, 2.8%, and 13.6% due to Level 
1, 2, and 3 restrictions, respectively, while the total decrease in 
demand becomes 24% in complete lockdown. In addition, it 
is shown that age-specific restrictions (Level 1) have a larger 
effect on weekdays whereas complete lockdown (Level 3) has 
a larger effect on weekends. It is found that the model is mostly 
successful in explaining our empirical observations presented in 
Section 3. Furthermore, standardized regression coefficients of 
the model are utilized to obtain an importance ranking among 
independent variables in the regression model. It is shown that 
religious holidays, weekly cycles, and the Monday effect are the 

most important observations for forecasting the hourly electricity 
demand in Turkey.

This study aims to explain changes in electricity demand due to 
COVID-19 restrictions in Turkey. Although most of our findings 
are limited to Turkey, the proposed approach to importance ranking 
among independent variables can be generalized to other countries’ 
electricity demand forecasting problems.
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