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Regression Quantiles under Heteroscedasticity  
and Multicollinearity: Analysis of Travel and Tourism  
Competitiveness1 

 
Jan  KALINA*  – Petra  VAŠANIČOVÁ**  – Eva  LITAVCOVÁ** 1  
 
 

Abstract 
 
 In the linear regression, heteroscedasticity and multicollinearity can be 
characterized as intertwined problems, which often simultaneously appear in 
econometric models. The aim of this paper is to discuss various approaches to 
regression modelling for heteroscedastic multicollinear data. A real economic 
dataset from the World Economic Forum serves as an illustration of various 
individual methods and the paper provides a practical motivation for quantile 
regression and particularly for regularized regression quantiles. In the dataset, 
tourist service infrastructure across 141 countries is modeled as a response of 
12 characteristics of the Travel and Tourism Competitiveness Index (TTCI). 
Regression quantiles and their lasso estimates turn out to be more suitable for 
the dataset compared to more traditional econometric tools. 
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Introduction and Motivation 
 
 Heteroscedasticity is one of the crucial assumptions of the standard linear 
regression model. Although it does not have a negative influence on the least 
squares (LS) estimate of β and prediction of the response, it may strongly affect 
confidence intervals and significance tests. Common heteroscedasticity tests 
implicitly require a proper set of relevant variables; otherwise, their power de-
creases if redundant independent variables are present in the model. Neverthe-
less, practitioners often perform heteroscedasticity testing over all available data, 
without reducing the dataset to relevant variables (Jurczyk, 2012). 
 On the other hand, standard variable selection tools by t-tests assume homo-
scedasticity. Although not admitted in standard textbooks on regression (Matloff, 
2017; Young, 2017), it is intuitively clear that alternative approaches (diagnostic 
tests or estimation procedures) are desirable for economic data under heterosce-
dasticity and (at the same time) presence of redundant variables. A rare example 
of such practical tools based on the least squares is the biased estimator of 
Alheety and Kibria (2009), which combines the benefit of ridge regression with 
a shrinkage estimator of Stein (1956). Regression quantiles (RQ) represent an 
important class of modelling tools suitable under both heteroscedasticity and 
multicollinearity with a potential to be successful in econometric applications 
(Fitzenberger, Koenker and Machado, 2002), however commonly used mainly 
for estimation, while the whole spectrum of corresponding hypothesis tests or 
tools for variable selection (lasso regression quantiles) remains underexploited 
(Koenker et al., 2017). 
 The aim of this paper is to discuss various approaches to regression modell-
ing for heteroscedastic multicollinear data. As an illustration, we present here 
a complex analysis of a real economic dataset connected with tourism destina-
tion competitiveness, which deals with serious modelling issues, such as multi-
collinearity and heteroscedasticity (Dlouhý and Flusserová, 2007).  
 Taking into account the current economic processes, tourism is currently 
regarded as a global phenomenon and as the fastest growing world industry. 
According to World Tourism Organization (UNWTO), the growth of this industry 
has been showing its resilience to global geopolitical and economic instability 
for the sixth consecutive year, so its importance in the economy is evident. From 
the data available for 2017 (WTTC, 2018), the tourism industry contributed 8.27 
trillion U.S. dollars to the global economy, representing 10.4% of the world 
GDP. In addition, it has created 313 million jobs, representing 1 out of every 10 
jobs on the planet. Tourism turns out to be a major driving force behind econo-
mic growth and employment. Because globalization increases the level of com-
petition, national governments have to approach the development of tourism 
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with a stronger emphasis (Štefko, Kiráľová and Mudrík, 2015). Unleashing new 
growth potential of industry within a given country also requires to enhance its 
competitiveness (Jenčová, 2018). 
 Various standard or more recent regression estimates and corresponding tests 
are applied in this paper to a real dataset from tourism management area, where 
the task is to model tourist service infrastructure in 141 economies of the world 
as a response of 12 characteristics of the Travel and Tourism Competitiveness 
Index (TTCI). Over the last two decades, the competition among destinations 
keeps increasing and there has been a growing need to acquire knowledge about 
a destination's competitive ability (Pulido-Fernández and Rodríguez-Díaz, 2016). 
Since 2007, the World Economic Forum has studied national competitiveness 
in the travel and tourism industry and has published reports allowing for cross-    
-country comparisons of travel and tourism competitiveness.  
 The importance of studying the competitiveness of tourism destinations was 
stressed by Bucher (2015), who evaluated it by means of a comprehensive com-
petitiveness index.  
 This paper has the following structure. Section 1 presents a brief overview of 
various approaches to modelling heteroscedasticity in linear regression, especial-
ly if there are redundant variables present in the model. In Section 2, individual 
methods are applied to analyze the TTCI dataset, bringing arguments in favor of 
regression quantiles and mainly their lasso estimators. As discussed in the Con-
clusions, the results may be useful for tourism policy decision making, or for 
management of other industries and business entities. 
 
 
1.  Regression Methodology:  
     Heteroscedasticity and Redundant Regressors 
 
 In this section, various approaches to heteroscedasticity estimation as well as 
subsequent testing and variable selection are discussed, especially if the regres-
sion model contains also redundant variables not contributing to the variability 
of the response. We consider the standard linear regression model 
 

0 1 1   , 1, ,i i p ip iY X X e i nβ β β= + +…+ + = …                  (1) 
 
where 1, , nY Y…  are values of a continuous response variable and 1( , , )Tne e e= …  

is the vector of random errors (disturbances). The least squares estimator of the 
parameters β of interest will be denoted by 0 1( , , , )LS LS LS T

LS pb b b b= … .  
 
 Variable selection for the least squares is commonly performed by stepwise 
procedures, with the backward selection being the most prominent method in 
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both statistics and data mining. Nevertheless, common stepwise variable selection 
approaches, based on a repeatedly used standard t-test, may inappropriately focus 
on too simple models. Their size also has a tendency to exceed 5% due to multi-
ple testing, and the tests may suffer from bias or from violations of homoscedas-
ticity (Whittingham et al., 2006). There are a plethora of tests of the null hypo-
thesis H0 of homoscedasticity against various (either generally or more specifically 
formulated) forms of an alternative hypothesis. Prominent examples include tests 
of Breusch-Pagan, Goldfeld-Quandt, or White’s general (non-constructive) test. 
However, their power depends heavily on the sample size and becomes smaller 
under multicollinearity in (1).  
 Also, a small deviation from normality of disturbances, which is usual in real 
economic data, may negatively affect analyzing the model (1). Without the nor-
mality of disturbances, the least squares estimator LSb  has the optimum property 

only within the family of linear unbiased estimators; typically, a better estimator 
can be found in the much wider class of biased estimators, if the normality does 
not hold.  
 Another complication is a lack of reliable guidelines for estimation if hetero-
scedasticity turns out to be significant. One common possibility for removing 
heteroscedasticity is to use Aitken estimator (also generalized least squares, 
heteroscedastic regression), i.e., to transform the model by introducing weights 
to individual observations and to apply weighted least squares (Greene, 2011). 
The result of the auxiliary model, which must be specified by the user, depends 
heavily on its ability to explain heteroscedasticity. Even if homoscedasticity is 
not rejected in the transformed model, it is not guaranteed that heteroscedasticity 
is removed completely. The transform also loses the interpretability of the origi-
nal model. 
 White’s heteroscedasticity-robust estimator of  LSvar b  (White, 1980) is con-

sistent under heteroscedasticity without any transform of the original model (1). 
Although it is commonly used routinely also under homoscedasticity, it has 
a lower efficiency in such a case. A significance test for individual regressors, 
based on White’s standard errors, is rather conservative, i.e., rejects less often. 
This is especially true if the sample size is not large (Wooldridge, 2013; Stock 
and Watson, 2015). It is due to the fact that corresponding t-values are not dis-
tributed according to the Student’s t-distribution, because we cannot prove the 

residual sum of squares corresponding to LSb  to have a 2χ -distribution. In other 

words, it is not possible to adapt the elegant trick previously used by Ronald 
A. Fisher, who considered a sum of squared normal random variables to obtain 

a 2χ -distribution with corresponding degrees of freedom, valid only under the 

important assumption of the same variances for the random variables (Fisher, 
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1920; Fisher, 1922). In addition, White’s estimator does not give the answer to 
the basic question if there is heteroscedasticity in the data or not. 
 Under multicollinearity, it is common to replace the least squares by ridge 
regression or lasso (least absolute shrinkage and selection operator) estimator, 
where the latter  
 

  � ( )( ), 1, ,LS LS
j j jsgn b b j pβ λ= − = …                 (2) 

 
with some value of the regularization parameter 0λ >  will be denoted as LS-     
-lasso to stress that it is based on least squares. The regularization by shrinking 
coefficients in (2) towards 0 stems from the original idea of Stein (1956). LS-      
-lasso allows for an intrinsic variable selection, is highly stable (robust) to small 
changes in data, and is especially suitable for correlated regressors (Kalina, 
2014). However, LS-lasso is suitable for homoscedastic variables, and its varia-
ble selection suffers under heteroscedasticity (Jia, Rohe and Yu, 2013). Ridge 
regression does not contain variable selection, and its interpretability is thus 
much less accessible (Hastie, Tibshirani and Friedman, 2009). 
 If data in (1) are contaminated by outliers, it is advisable to consider a (high-
ly) robust estimator of β. The least weighted squares (LWS) estimator LWSb  of 

Víšek (2011) possesses appealing properties such as regression-equivariance or 
high breakdown point. We consider variable selection for the LWS estimator in 
the form of a backward stepwise procedure, which is analogous to the least 
squares; testing is performed by means of nonparametric bootstrap confidence 
intervals for  LWSvar b  here, rather than by t-tests. There are also recently pro-

posed tests of heteroscedasticity for the LWS (Kalina, 2012), which contributed 
to over-optimistic expectations that heteroscedasticity does not represent a po-
tential danger to linear regression anymore. Nevertheless, both asymptotic and 
permutation-based tests following the ideas of Nyblom (2015) remain vulnerable 
to multicollinearity just like for the least squares, and it also remains difficult to 
remove heteroscedasticity if these tests are significant. 
 White’s estimator for the LWS was derived by Víšek (2010, p. 43), whose 
formula (23) for the heteroscedasticity-consistent estimator, formulated for a more 
general situation with instrumental variables, should be corrected by the proper 
form of  LWSvar b  
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where 1( , , )Ti i ipX X X= …  and ( )i LWSu b  are residuals corresponding to the LWS 

estimator. The steps of the proof of Víšek (2010) are valid showing that (3)  
converges in probability to the true covariance matrix of LWSb , if the number 

of observations goes to infinity and if (technical) assumptions are fulfilled. It 
is evident, although not sufficiently investigated in the literature, that White’s 
estimator may be mislead by the presence of redundant variables in the model. 

This follows from the fact that the dimensionality of 
1

/
n

T
i i

i

X X n
=
  gets larger 

with an increasing number of redundant variables and thus this matrix, which 
must be inverted, becomes likely to be ill-conditioned. 
 Regression quantiles are reliable modelling tools under heteroscedasticity 
with a clear interpretation, if the whole set of regression τ-quantiles is evaluated 
for various values τ ∊ (0, 1). They are able to capture the whole distribution of 
the response instead of simply considering the mean trend. In the literature (in-
cluding the seminal book by Koenker (2005)), regression quantiles are typically 
performed on simplistic data with a very small number of regressors, which do 
not actually require regression quantiles, because simple graphical illustrations 
give insight to such data as well.  
 We will use three different tests for regression quantiles in Section 2: 

a) Tests of significance of individual regressors (variable selection) based on 
regression rank scores (RRS).  

b) The test of equality of regression parameters for various (two or more) 
values of τ based again on RRS.  

c) The Khmaladze test, originally proposed by Koenker and Xiao (2002), of 
equality of regression parameters for the whole range of τ (i.e., across all τ). It 
involves estimating nuisance parameters and is only asymptotically distribution-
free, based on asymptotics of empirical processes. 
 The first two tests and corresponding confidence intervals exploit general 
results of Gutenbrunner et al. (1993) and are distribution-free without a need for 
a prior estimating of nuisance parameters. As investigated by Jurečková and 
Navrátil (2014), both are also resistant to local heteroscedasticity. Nevertheless, 
studies of quality of fit of regression quantiles (Wang, Zhou and Li, 2013; 
Ranganai, 2016) reveal that these tests are not reliable for variable selection. 
Backward stepwise variable selection can be performed exploiting these tests but 
with the same limitations as for the least squares. 
 Regression quantiles regularized by the lasso penalty (further denoted as RQ-  
-lasso) proposed by Koenker (2005) can be described as an extension of LS-lasso 
to regression quantiles with an ability to perform variable selection. While theo-
retical results are available for RQ-lasso, particularly concerning the variable 
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selection consistency, the method has been rarely applied to economic data 
(cf. Jiang and Qian, 2016). This motivates us to apply them to real data from the 
tourism industry in this section. 
 
 
2.  Analysis of Travel and Tourism Competitiveness Data  
 
 For comparing the competitiveness of individual countries in the tourism 
area, the World Economic Forum (WEF) publishes a yearly Travel and Tourism 
Competitiveness Report (TTCR). Here, we work with the TTCR dataset contain-
ing TTCI characteristics in 141 countries of the whole world. Particularly, we 
model the Tourist Service Infrastructure (TSI) as a response of 12 pillars (indica-
tors) of Table 1. The analysis illustrates the performance of various methods of 
Section 1 under heteroscedasticity and multicollinearity. 
 
T a b l e  1  

List of 12 Regressors of the Travel and Tourism Dataset 

Index Abbreviation Name of the regressor 

  1 BE Business Environment 

  2 SS Safety and Security 

  3 HH Health and Hygiene 

  4 HRLM Human Resources and Labour Market 

  5 ICT Information and Communication Technologies Readiness 

  6 TT Prioritization of Travel and Tourism 

  7 IO International Openness 

  8 PC Price Competitiveness 

  9 ES Environmental Sustainability 

10 ATI Air Transport Infrastructure 

11 GPI Ground and Port Infrastructure 

12 NR Natural Resources 

Source: Crotti and Misrahi (2015). 

 
 The dataset obtained from Crotti and Misrahi (2015) contains 14 pillars (varia-
bles), which characterize areas that impact travel and tourism competitiveness. 
Raw data, acquired by the WEF in an opinion survey, are normalized to a com-
mon 1-to-7 scale, while the overall TTCI is calculated by gradually aggregating 
the results of the individual pillars using a simple average. From all available 
variables, we omitted the last pillar. Let us interpret the 12 pillars under conside-
ration, using the notation of Table 1. 

• Pillars 1 – 5, directly linked to economic growth and important for business de-
velopment, create the first subindex of TTCI denoted as Enabling Environment.  

• Pillars 6 – 9, which are more sector-specific, create a subindex Travel and 
Tourism Policy and Enabling Conditions.  
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• Pillars 10 – 11, together with TSI, are directly related to travel and tourism 
infrastructure and create the Infrastructure subindex. 

• Pillar 12, together with the omitted pillar (Cultural Resources and Business 
Travel), create the fourth subindex denoted as Natural and Cultural Resources.  
 TSI corresponds to the level of tourism service infrastructure evaluated by 
means of the number of “upper-level” hotel rooms complemented by the extent 
of access to services such as car rentals and automated teller machines. The idea 
is that the availability of sufficient quality accommodation, resorts, and enter-
tainment facilities may represent a significant competitive advantage (Crotti and 
Misrahi, 2015). Our analysis represents a unique application within the tourism 
management area, where regression quantiles seem to have been applied only to 
tourist spending so far (Lew and Ng, 2011; Rudkin and Sharma, 2017). A pre-
liminary analysis of this data was presented by Vašaničová et al. (2017), how-
ever with different aims to investigate various relationships among individual 
variables.  
 The regression task in the example is to find a suitable model with regressors 
relevant for explaining TSI. This also required to decide whether the relationship 
is heteroscedastic or not. The response is a continuous variable, just like all the 
regressors. The data seem to contain neither missing values nor severe outliers. 
The regressors suffer from heavy multicollinearity with a condition number 
(i.e., ratio of the largest to the smallest singular value of TX X ) equal to 3443, 
where X denotes the design matrix with elements ijX  with 1, ,i n= …  and 

1,j p= … . The principal component analysis does not reveal any interesting 

structure in X, while the contribution of all regressors to the first principal compo-
nents is basically equal. Our following computations are performed in R software, 
using several additional packages (glmnet, het.test, Qtools, quantreg, sandwich). 
 We performed a backward variable selection by means of various methods, 
which include t-tests or tests based on White’s estimates of standard errors. Table 2 
shows the resulting significant variables arranged according to the significance, 
starting with variables with the smallest p-value. Tests for the LWS estimator 
yield similar results; however, it is needed to take resort to a nonparametric 
bootstrap test (Kalina and Peštová, 2017) to replace t-tests. Within the LS-lasso 
estimator, the optimal regularization found by a 10-fold cross-validation in pack-
age glmnet is almost negligible (λ 0.004= ), and thus all variables remain to 
contribute to the model, and no variable selection is performed. 
 Results of heteroscedasticity tests for the least squares as well as for the LWS 
estimators for (1) with all 12 regressors are shown in Table 3, where however 
none of the tests yields a significant result. This is revealed as very misleading in 
Figure 1 showing the relationship between the response and variables 5, 6 and 10, 
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which will be later explained to be the crucial regressors in the model. A linear 
trend with a major heteroscedasticity can be observed in each of the figures, in 
spite of the results of tests.  
 
T a b l e  2  

Variable Selection Applied to Various Estimators with the List of Significant  
Variables, Starting from the Most Significant to the Least Significant 

Estimator Method Significant variables 

LS t-tests 6, 5, 9, 1, 10 
LS White’s estimator 6, 5, 9, 1, 3, 10 
LWS Nonparametric bootstrap 6, 5, 9 
LWS White’s estimator 6, 5, 1, 9, 3 
LS-lasso (with optimal λ ) Non-zero estimate of jβ  6, 5, 9, 1, 3, 10, 4, 7, 2, 11, 12, 8 

Regr. quantile (τ = 0.1) Test based on RRS (A) 5, 6 
Regr. quantile (τ = 0.3) Test based on RRS (A) 5, 6 
Regr. quantile (τ = 0.5) Test based on RRS (A) 6, 5, 1, 10, 4 
Regr. quantile (τ = 0.7) Test based on RRS (A) 6, 5, 10 
Regr. quantile (τ = 0.9) Test based on RRS (A) 6, 10 

Source: Own computation. 

 
T a b l e  3  

Results of Heteroscedasticity Tests 

Heteroscedasticity test Degrees of freedom p-value for LS Asymptotic 
p-value for LWS 

Breusch-Pagan on 12 variables 12 0.362 0.401 
Breusch-Pagan on the set  
of regressors {1, 5, 6, 9, 10} 

 
  5 

 
0.053 

 
0.063 

White’s test 20 0.089 0.094 

Source: Own computation. 

 
 Let us now consider generalized least squares (Aitken estimator) for the model 
(1) with all 12 variables. This popular heteroscedastic regression approach (see 
Greene (2011), Sec. 9.3) proceeds in two stages. First, least squares are used to esti-
mate � in (1) and thus to obtain residuals 1, , nu u… . In the second stage, the model 
 

0 1 1 , 1, ,p ipi i
i

i i i i

XY X
v i n

u u u u

γγ γ
= + …+ + = …                (4) 

 
is considered and least squares are used to estimate parameters 0, , pγ γ…   (instead 

of the original parameters 0, , pβ β… ). This two-stage approach is motivated by the 

idea (although not directly confirmable) that 2 2 i ivare uσ= , which implies the errors 

1, , nv v…  in (4) to be homoscedastic with variance 2σ . The results of all regressors 

in (4) except for variable 12 turn out to be significant and the Breusch-Pagan test 
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in the transformed model (4) yields a p-value 0.063. This is, however, very mis-
leading due to the presence of redundant variables as we will now see.  
 If we use (4) only with the set of variables {1, 5, 6, 9, 10}, which are the 
5 variables significant by t-tests of above, all of them turn out to be significant in 
(4), and the Breusch-Pagan test yields a p-value 0.009. Additional graphs (not 
presented here) do not reveal a linear trend of the transformed response against 
most of the transformed regressors. In addition, the transform introduces severe 
outliers (or propagates their effect) to the data. The results remain rather similar 
if the LWS model is used, which is more appropriate for data contaminated by 
outliers; there remains even heavier heteroscedasticity in the transformed model 
compared to the original model (1). 
 
F i g u r e  1  

Plot of the Response Against Variable 5 (left), 6 (right) and 10 (bottom) 

   
 

 
Source: Own computation. 
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 Results of three versions of tests for regression quantiles (see Section 1) are 
presented in Table 2. Tests (A) yield 5 significant regressors for the regression 
median. For τ equal to 0.1 or 0.9, they yield not more than two significant regres-
sors. Such dependence of the test result is due to narrower confidence intervals 
for more extreme τ (see Koenker, 2005, p. 72). The effect of regressors on the 
response is more complex, and regressor 5 (and 6) turns out to be important for 
smaller τ, while regressor 6 (together with 5 and 10) becomes crucial for larger τ. 
We consider the set {5, 6, 10} to be result of variable selection by regression 
quantiles, while each of the three variables comes from a different subindex 
of TTCI: Enabling Environment (variable 5), Travel and Tourism Policy (6), and 
Infrastructure (10), respectively. Also variables 1 and 4, significant for the    
regression median, are related to macroeconomic environment and highly corre-
lated with variable 5. 
 The test (B) of equality of all the 12 slopes of � for 5 different values of � 
was performed across values equal to {0.1, 0.3, 0.5, 0.7, 0.9}. The result is highly 
significant with p-value 910− . The test remains significant also if various subsets 
of regressors are considered. This is true for the subset {1, 4, 5, 6, 10} with 

68 · 10p −= or {1, 3, 5, 6, 9, 10} with 42 · 10p −=   

 The Khmaladze test (C) yields a highly significant result if used for all 
12 regressors as well as for these subsets. Its p-value can also be approximated, 
but this is not provided in R software. While the Kmaladze test allows consider-
ing the same null hypothesis for individual regressors, we observe such test to be 
extremely vulnerable to multicollinearity, as it is heavily dependent on omitting 
a single regressor from the model. 
 For the RQ-lasso for different values of τ, Figure 2 shows graphs of estimates 
for the 12 regressors, which are analogous to graphs commonly used for LS-lasso. 
The figures show solution paths of each jb  (estimate of jβ ) against values of 

/j js b max b= , depending on the regularization parameter λ . Here, the maximal 

values in the denominator of s are equal to values of (non-regularized) regression 
τ-quantiles. Figure 2 thus reveals the effect of the regularization on the estimates 
with s = 0 corresponding to maximum possible regularization and s = 1 to none. 
Cross-validation minimizing the mean square error makes no sense here for find-
ing a suitable estimate of the regularization level, but no alternative method 
seems to be available. The set of relevant variables in the model seems not to be 
the same across τ. Still, based on a subjective evaluation of Figure 2, we consider 
the regressors 3, 5, 6 and 10 as the variables relevant for predicting the response. 
Here, variables 3 and 5 are highly correlated with correlation coefficient r = 0.82; 
both are connected to macroeconomic environment, while variable 3 is more 
important for larger τ and variable 5 for smaller τ. 
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F i g u r e  2  

RQ-lasso Estimates Depending on s  

  
 

 
 

 
 
Note: Horizontal axis: values of s between 0 and 1. Vertical axis: RQ-lasso estimates of regression parameters 
for all 12 regressors for 0.1τ =  and 0.3 (top row), 0.5τ =  and 0.7 (middle row), and 0.9τ =  (bottom). 

Source: Own computation. 
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 For the relevant set {3, 5, 6, 10} of regressors, Table 4 presents an overview 
of various estimates of the regression parameters. RQ-lasso indicates the hetero-
scedasticity in most of the regressors clearly, as the estimates of the parameters 
are very different across τ. For the subset {3, 5, 6, 10}, Table 5 shows confidence 
intervals for the important regressors 5 and 6. The width of confidence intervals 
is larger for extreme quantiles, although not depending on τ in a monotone way; 
this is in accordance with theoretical knowledge already discussed above. We 
consider RQ-lasso to be a very suitable tool for the analysis of the given data. 
Lasso estimators are known as useful, when there is a small number of dominant 
variables in the whole set of variables, which is clearly the case of our dataset. 
For smaller τ, RQ-lasso reveals a single variable (regressor 5) to be very domi-
nant. For larger τ, 2 or 3 variables turn out to be dominant, while all other regres-
sors do contribute to the response as well. 
 
T a b l e  4  

Estimates of Regression Parameters for the Subset of Regressors {3, 5, 6, 10}  
for the Least Squares and Regression Quantiles (RQ) 

 LS RQ (τ = 0.1) RQ (τ = 0.3) RQ (τ = 0.5) RQ (τ = 0.7) RQ (τ = 0.9) 

β0 −0.18   0.99 −0.80 0.32 −0.04 −0.58 
β3   0.20 −0.01   0.08 0.09   0.26   0.25 
β5   0.38   0.54   0.49 0.52   0.25   0.44 
β6   0.52   0.26   0.52 0.49   0.53   0.40 
β10   0.15 −0.04   0.07 0.09   0.22   0.29 

Source: Own computation. 
 
T a b l e  5  

A Detailed Overview of Confidence Intervals for β5 and β6 for Regression  
Quantiles in the Model with Regressors {3, 5, 6, 10}  

τ Conf. interval for β5 Width Conf. interval for β6 Width 

0.1   (0.47, 0.85) 0.38 (0.09, 0.48) 0.39 
0.3   (0.10, 0.68) 0.58 (0.20, 0.71) 0.51 
0.5   (0.30, 0.57) 0.27 (0.39, 0.59) 0.20 
0.7   (0.17, 0.58) 0.41 (0.32, 0.72) 0.40 
0.9 (−0.10, 0.66) 0.76 (0.14, 0.86) 0.72 

Source: Own computation. 
 
T a b l e  6  

Regressors Arranged According to their Relevance for Explaining the Response,  
Based on the LS-lasso and RQ-lasso (RQL) 

Method Order of regressors from the most important to the most redundant 

LS-lasso 5 3 10 6 7 9 8 12 1 11 2 4 
RQL (τ = 0.1) 5 6 7 8 9 2 1 3 4 12 10 11 
RQL (τ = 0.3) 5 6 10 9 4 3 12 1 2 8 7 11 
RQL (τ = 0.5) 5 3 10 6 11 7 8 9 2 1 4 12 
RQL (τ = 0.7) 10 5 3 11 6 7 12 9 1 2 4 8 
RQL (τ = 0.9) 10 5 3 6 11 12 2 7 9 1 4 8 

Source: Own computation. 
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 Results of LS-lasso and RQ-lasso (for different τ) are compared in Table 6, 
where all 12 regressors are ordered according to their contribution to the variabili-
ty of the response. With an increasing regularization parameter λ , these estimates 
of each jβ  ( 1, ,j p= … ) vary until becoming exactly 0. In Table 6, regressors 

are arranged according to such values of λ , for which their estimates of jβ  be-

come 0. While the variable selection of RQ-lasso has theoretically appealing 
properties as explained in Section 1, it finds rather different variables from those 
obtained with a backward variable selection with (standard) regression quantiles, 
where the latter approach cannot be supported by theoretical arguments.  
 
 
Conclusions 
 

 The objective of the paper is to discuss various approaches to regression mode-
lling under heteroscedasticity and multicollinearity. This discussion provides a mo-
tivation for quantile regression and especially regularized regression quantiles. 
Limitations of standard tools for heteroscedasticity testing or variable selection are 
discussed together with benefits of more modern tools including regression quan-
tiles and RQ-lasso. The real dataset from the tourism management area, which is 
downloadable from the website shown in the references under Crotti and Misrahi 
(2015), is analyzed here as an illustration of particular methods. In the task to ex-
plain and predict the Tourist Service Infrastructure (TSI) as a response of 12 pillars 
(as regressors) of TTCI in 141 countries of the world, the relevant variables turn 
out to be Health and Hygiene, Information and Communication Technologies 
Readiness, Prioritization of Travel and Tourism, and Air Transport Infrastructure. 
 Heteroscedasticity tests do not give satisfactory results in the given dataset in 
spite of a relatively large n. Standard tests do not find the (otherwise apparent) 
heteroscedasticity in the model. If a subset of regressors is considered, hetero-
scedasticity becomes revealed, but then it remains difficult to remove it. This is 
true for diagnostic tests for the least squares as well as for the robust LWS esti-
mator, for which a novel proper form of White’s estimator is proposed here in 
(3). The LWS estimator, which is theoretically proven to be suitable under hetero-
scedasticity (Víšek, 2011), does not bring many benefits here and its stepwise 
variable selection suffers from multicollinearity, just like for the least squares. 
The whole set of regression τ-quantiles (across various τ) is illustrated here as 
a useful tool for investigating the relationship of the response on regressors. In 
the given data, this complex relationship turns out to be influenced by heterosce-
dasticity, so that it cannot be simply characterized by a single mean trend. 
 The travel and tourism dataset shows that lasso estimation brings benefits not 
only for a large number of variables p, for which it was originally designed. The 
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variable selection of RQ-lasso is known to possess a variable selection con-
sistency, which is not true for any stepwise procedure for (standard) regression 
quantiles. Thus, we evaluate RQ-lasso as preferable, although we admit that its 
subjective choice of relevant variables requires an experienced user. RQ-lasso is 
also more complicated than the LS-lasso and their resulting models are not 
equivalent; the latter performs shrinking of estimates of jβ  ( 1, ,j p= … ) depend-

ing on an additional regularization parameter λ .  
 On the whole, it turns out that variable selection by RQ-lasso can be performed 
in an analogous spirit as by LS-lasso, although the former has been rarely used in 
econometric applications. Nevertheless, both RQ-lasso and LS-lasso implicitly 
assume 1 , ,  pvarb varb…  to be at least approximately equal, which has not been 

theoretically investigated for RQ-lasso. While LS-lasso exhibits some drawbacks 
such as instability, too restrictive conditions on the design matrix, or confound-
ing variables (as discussed by Kalina, 2014), RQ-lasso may potentially inherit 
these properties from LS-lasso as well. 
 Beyond the scope of this paper, other possibilities for regression under hete-
roscedasticity include transforms of the response, possibly combined with a suita-
ble dimension reduction method, such as sliced inverse regression of Li (1991). 
A ridge LWS estimator, i.e., a tailor-made version of the LWS for multicollinear 
data, was investigated by Jurczyk (2012). As future methodological research, we 
plan to extend and investigate lasso estimation to the LWS estimator or to multi-
variate quantiles of Hlubinka and Šiman (2013). As tourism represents a signifi-
cant part of the total economy in many countries and provides numerous employ-
ment opportunities, exploration of development patterns in tourism should be 
a focal point for policymakers around the world. Using new statistical methods 
can help the economic development of any industry. For tourism policymakers, 
an in-depth analysis of conditional quantiles of the response can make the right 
strategic decisions possible. This may contribute to strengthening the competi-
tiveness of tourism industry and to ensuring sustainable tourism development. 
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