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Regression Quantiles under Heteroscedasticity
and Multicollinearity: Analysis of Travel and Tourism
Competitiveness’

Jan KALINA — Petra VASANIOVA*™ — Eva LITAVCOVA

Abstract

In the linear regression, heteroscedasticity andlticnllinearity can be
characterized as intertwined problems, which ofsemultaneously appear in
econometric models. The aim of this paper is toudis various approaches to
regression modelling for heteroscedastic multiogliir data. A real economic
dataset from the World Economic Forum serves asllastration of various
individual methods and the paper provides a prattimotivation for quantile
regression and particularly for regularized regrass quantiles. In the dataset,
tourist service infrastructure across 141 countriesmodeled as a response of
12 characteristics of the Travel and Tourism Corntipeness Index (TTCI).
Regression quantiles and their lasso estimates doutnto be more suitable for
the dataset compared to more traditional econoroetols.
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Introduction and Motivation

Heteroscedasticity is one of the crucial assumgtiof the standard linear
regression model. Although it does not have a megamfluence on the least
squares (LS) estimate gfand prediction of the response, it may strongfgcif
confidence intervals and significance tests. Comrheteroscedasticity tests
implicitly require a proper set of relevant variedl otherwise, their power de-
creases if redundant independent variables aremrés the model. Neverthe-
less, practitioners often perform heteroscedagtieiting over all available data,
without reducing the dataset to relevant variaflesczyk, 2012).

On the other hand, standard variable selectiols topt-tests assume homo-
scedasticity. Although not admitted in standardliesks on regression (Matloff,
2017; Young, 2017), it is intuitively clear thatexhative approaches (diagnostic
tests or estimation procedures) are desirabledon@mic data under heterosce-
dasticity and (at the same time) presence of reghinéariables. A rare example
of such practical tools based on the least squiarése biased estimator of
Alheety and Kibria (2009), which combines the bénaf ridge regression with
a shrinkage estimator of Stein (1956). Regressimmtjes (RQ) represent an
important class of modelling tools suitable undethbheteroscedasticity and
multicollinearity with a potential to be successimleconometric applications
(Fitzenberger, Koenker and Machado, 2002), howewenmonly used mainly
for estimation, while the whole spectrum of cormsfing hypothesis tests or
tools for variable selection (lasso regression tjles) remains underexploited
(Koenker et al., 2017).

The aim of this paper is to discuss various apgres: to regression modell-
ing for heteroscedastic multicollinear data. Asilarstration, we present here
a complex analysis of a real economic dataset abedewith tourism destina-
tion competitiveness, which deals with serious miodgissues, such as multi-
collinearity and heteroscedasticity (Dlouhy andsBkrova, 2007).

Taking into account the current economic processmgism is currently
regarded as a global phenomenon and as the fagtesing world industry.
According to World Tourism Organization (UNWTO)etlgrowth of this industry
has been showing its resilience to global geopgalitand economic instability
for the sixth consecutive year, so its importamcthe economy is evident. From
the data available for 2017 (WTTC, 2018), the ®mrindustry contributed 8.27
trillion U.S. dollars to the global economy, remetsng 10.4% of the world
GDP. In addition, it has created 313 million jokepresenting 1 out of every 10
jobs on the planet. Tourism turns out to be a maitving force behind econo-
mic growth and employment. Because globalizatiamgases the level of com-
petition, national governments have to approachdéeelopment of tourism
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with a stronger emphasis (Stefko, Kin&éa and Mudrik, 2015). Unleashing new
growth potential of industry within a given countmiso requires to enhance its
competitiveness (Jéava, 2018).

Various standard or more recent regression essyatd corresponding tests
are applied in this paper to a real dataset fraimism management area, where
the task is to model tourist service infrastructuwrd41 economies of the world
as aresponse of 12 characteristics of the Travel Taurism Competitiveness
Index (TTCI). Over the last two decades, the coitipatamong destinations
keeps increasing and there has been a growingtoesajuire knowledge about
a destination's competitive ability (Pulido-Fernénénd Rodriguez-Diaz, 2016).
Since 2007, the World Economic Forum has studietbma competitiveness
in the travel and tourism industry and has pubtisteports allowing for cross-
-country comparisons of travel and tourism comjwetitess.

The importance of studying the competitivenessoafism destinations was
stressed by Bucher (2015), who evaluated it by s\@hma comprehensive com-
petitiveness index.

This paper has the following structure. Sectigmrdsents a brief overview of
various approaches to modelling heteroscedastitlipear regression, especial-
ly if there are redundant variables present inntioglel. In Section 2, individual
methods are applied to analyze the TTCI dataseigibg arguments in favor of
regression quantiles and mainly their lasso estirmafAs discussed in the Con-
clusions, the results may be useful for tourismagyotlecision making, or for
management of other industries and business entitie

1. Regression Methodology:
Heteroscedasticity and Redundant Regressors

In this section, various approaches to heterostets estimation as well as
subsequent testing and variable selection are shscy especially if the regres-
sion model contains also redundant variables notribaiting to the variability
of the response. We consider the standard lingaession model

Y =B+ BX B X, R E LT (1)

whereY,,...,Y, are values of a continuous response variableesn(g, ..., €)'
is the vector of random errors (disturbances). [Bast squares estimator of the
parameterg of interest will be denoted bly s = (°, b'°,..., b,°) .

Variable selection for the least squares is coniynparformed by stepwise
procedures, with the backward selection being tlostrprominent method in
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both statistics and data mining. Nevertheless, comstepwise variable selection
approaches, based on a repeatedly used statstd may inappropriately focus
on too simple models. Their size also has a tendenexceed 5% due to multi-
ple testing, and the tests may suffer from biasam violations of homoscedas-
ticity (Whittingham et al., 2006). There are a ptea of tests of the null hypo-
thesisH, of homoscedasticity against various (either gdlyssa more specifically
formulated) forms of an alternative hypothesis.riirent examples include tests
of Breusch-Pagan, Goldfeld-Quandt, or White’s gah@ron-constructive) test.
However, their power depends heavily on the sarsizie and becomes smaller
under multicollinearity in (1).

Also, a small deviation from normality of disturizes, which is usual in real
economic data, may negatively affect analyzingrtioelel (1). Without the nor-
mality of disturbances, the least squares estimatohas the optimum property
only within the family of linear unbiased estimatptypically, a better estimator
can be found in the much wider class of biasednastirs, if the normality does
not hold.

Another complication is a lack of reliable guidels for estimation if hetero-
scedasticity turns out to be significant. One commossibility for removing
heteroscedasticity is to use Aitken estimator (ajsoeralized least squares,
heteroscedastic regression), i.e., to transforrmtbdel by introducing weights
to individual observations and to apply weightedstesquares (Greene, 2011).
The result of the auxiliary model, which must bedfied by the user, depends
heavily on its ability to explain heteroscedasficiEven if homoscedasticity is
not rejected in the transformed model, it is nairgnteed that heteroscedasticity
is removed completely. The transform also losedrttegpretability of the origi-
nal model.

White’s heteroscedasticity-robust estimatorvaf b ; (White, 1980) is con-
sistent under heteroscedasticity without any t@mnsfof the original model (1).
Although it is commonly used routinely also undemioscedasticity, it has
a lower efficiency in such a case. A significanest tfor individual regressors,
based on White’'s standard errors, is rather contigey i.e., rejects less often.
This is especially true if the sample size is rogé (Wooldridge, 2013; Stock
and Watson, 2015). It is due to the fact that gpoadingt-values are not dis-
tributed according to the Studentslistribution, because we cannot prove the
residual sum of squares correspondingptoto have ay’-distribution. In other

words, it is not possible to adapt the eleganktpeeviously used by Ronald
A. Fisher, who considered a sum of squared noraraam variables to obtain
a x’-distribution with corresponding degrees of freedemlid only under the

important assumption of the same variances forrdimelom variables (Fisher,
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1920; Fisher, 1922). In addition, White’s estimadoes not give the answer to
the basic question if there is heteroscedastinithé data or not.

Under multicollinearity, it is common to repladeetleast squares by ridge
regression or lasso (least absolute shrinkage aledt®n operator) estimator,
where the latter

Z?j =sgn( kf)(‘ lﬂ—A), i=L...,p 2

with some value of the regularization parameter 0 will be denoted as LS-
-lasso to stress that it is based on least squahesregularization by shrinking
coefficients in (2) towards O stems from the orairdea of Stein (1956). LS-
-lasso allows for an intrinsic variable selectimhighly stable (robust) to small
changes in data, and is especially suitable foretated regressors (Kalina,
2014). However, LS-lasso is suitable for homosdiciaariables, and its varia-
ble selection suffers under heteroscedasticity, R@zhe and Yu, 2013). Ridge
regression does not contain variable selection, indhterpretability is thus
much less accessible (Hastie, Tibshirani and Fréadr2009).

If data in (1) are contaminated by outliers, ia@visable to consider a (high-
ly) robust estimator of. The least weighted squares (LWS) estimdigy; of
ViSek (2011) possesses appealing properties suobgesssion-equivariance or
high breakdown point. We consider variable selectar the LWS estimator in
the form of a backward stepwise procedure, whiclarialogous to the least
squares; testing is performed by means of nonpdranit®otstrap confidence
intervals forvarh, here, rather than bistests There are also recently pro-
posed tests of heteroscedasticity for the LWS (€alk012), which contributed
to over-optimistic expectations that heteroscediygtdoes not represent a po-
tential danger to linear regression anymore. Naetgts, both asymptotic and
permutation-based tests following the ideas of Ngb(2015) remain vulnerable
to multicollinearity just like for the least squarend it also remains difficult to
remove heteroscedasticity if these tests are ignif.

White's estimator for the LWS was derived by Vi§ew10, p. 43), whose
formula (23) for the heteroscedasticity-consiststimator, formulated for a more
general situation with instrumental variables, dtidae corrected by the proper
form of varh s

%Hzx XH% 7 (us) X x}[—iz X %} -

:{ZX >€Hitﬁ( Bus) X X [z X xf} 3)
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where X; =(Xy,..., X,)" anduy, (QWS) are residuals corresponding to the LWS

estimator. The steps of the proof of Visek (201@® walid showing that (3)
converges in probability to the true covariancermatf b, if the number
of observations goes to infinity and if (technicagsumptions are fulfilled. It
is evident, although not sufficiently investigatedthe literature, that White's
estimator may be mislead by the presence of rediindaiables in the model.

This follows from the fact that the dimensionaliy ZXi X" I n gets larger
i=1

with an increasing number of redundant variabled #us this matrix, which

must be inverted, becomes likely to be ill-condigd.

Regression quantiles are reliable modelling taoisler heteroscedasticity
with a clear interpretation, if the whole set ofressiornt-quantiles is evaluated
for various valueg € (0, 1). They are able to capture the whole distiim of
the response instead of simply considering the ntesand. In the literature (in-
cluding the seminal book by Koenker (2005)), regi@s quantiles are typically
performed on simplistic data with a very small nembf regressors, which do
not actually require regression quantiles, becausple graphical illustrations
give insight to such data as well.

We will use three different tests for regressioarmiles in Section 2:

a) Tests of significance of individual regressors iaale selection) based on
regression rank scores (RRS).

b) The test of equality of regression parameters &ous (two or more)
values ofr based again on RRS.

¢) The Khmaladze test, originally proposed by Koerdau Xiao (2002), of
equality of regression parameters for the wholegeaof z (i.e., across alt). It
involves estimating nuisance parameters and is asyynptotically distribution-
free, based on asymptotics of empirical processes.

The first two tests and corresponding confidenttervals exploit general
results of Gutenbrunner et al. (1993) and areildigion-free without a need for
a prior estimating of nuisance parameters. As tiyated by Jurgkova and
Navrétil (2014), both are also resistant to locatehoscedasticity. Nevertheless,
studies of quality of fit of regression quantilé&/gng, Zhou and Li, 2013;
Ranganai, 2016) reveal that these tests are niablelfor variable selection.
Backward stepwise variable selection can be peddraxploiting these tests but
with the same limitations as for the least squares.

Regression quantiles regularized by the lassolyeffiarther denoted as RQ-
-lasso) proposed by Koenker (2005) can be descdbexh extension of LS-lasso
to regression quantiles with an ability to perforariable selection. While theo-
retical results are available for RQ-lasso, paldidy concerning the variable
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selection consistency, the method has been ramgbyied to economic data
(cf. Jiang and Qian, 2016). This motivates us fayathem to real data from the
tourism industry in this section.

2. Analysis of Travel and Tourism Competitiveness Data

For comparing the competitiveness of individualiroies in the tourism
area, the World Economic Forum (WEF) publishesarlyelravel and Tourism
Competitiveness Report (TTCR). Here, we work wite TTCR dataset contain-
ing TTCI characteristics in 141 countries of theokehworld. Particularly, we
model the Tourist Service Infrastructure (TSI) assponse of 12 pillars (indica-
tors) of Table 1. The analysis illustrates the @erniance of various methods of
Section 1 under heteroscedasticity and multicadliitg.

Table 1
List of 12 Regressors of the Travel and Tourism Daiset
Index Abbreviation Name of the regressor
1 BE Business Environment
2 SS Safety and Security
3 HH Health and Hygiene
4 HRLM Human Resources and Labour Market
5 ICT Information and Communication TechnolodgReEadiness
6 TT Prioritization of Travel and Tourism
7 10 International Openness
8 PC Price Competitiveness
9 ES Environmental Sustainability
10 ATI Air Transport Infrastructure
11 GPI Ground and Port Infrastructure
12 NR Natural Resources

Source Crotti and Misrahi (2015).

The dataset obtained from Crotti and Misrahi (3GIdmtains 14 pillars (varia-
bles), which characterize areas that impact trawel tourism competitiveness.
Raw data, acquired by the WEF in an opinion sureeg,normalized to a com-
mon 1-to-7 scale, while the overall TTCI is calt¢ethby gradually aggregating
the results of the individual pillars using a simglverage. From all available
variables, we omitted the last pillar. Let us iptet the 12 pillars under conside-
ration, using the notation of Table 1.

« Pillars 1 — 5, directly linked to economic growtidamportant for business de-
velopment, create the first subindex of TTCI dedais Enabling Environment.

- Pillars 6 — 9, which are more sector-specific, measubindex Travel and
Tourism Policy and Enabling Conditions.
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« Pillars 10 — 11, together with TSI, are directjated to travel and tourism
infrastructure and create the Infrastructure subind

- Pillar 12, together with the omitted pillar (CuliiiResources and Business
Travel), create the fourth subindex denoted asrsb#ind Cultural Resources.

TSI corresponds to the level of tourism servickastructure evaluated by
means of the number of “upper-level” hotel roommptemented by the extent
of access to services such as car rentals and atgdrteller machines. The idea
is that the availability of sufficient quality aaoonodation, resorts, and enter-
tainment facilities may represent a significant petitive advantage (Crotti and
Misrahi, 2015). Our analysis represents a uniqusicgiion within the tourism
management area, where regression quantiles sekavéobeen applied only to
tourist spending so far (Lew and Ng, 2011; Rudkid &harma, 2017). A pre-
liminary analysis of this data was presented byavigdva et al. (2017), how-
ever with different aims to investigate variousatielnships among individual
variables.

The regression task in the example is to finditaisie model with regressors
relevant for explaining TSI. This also requirediexide whether the relationship
is heteroscedastic or not. The response is a ecantivariable, just like all the
regressors. The data seem to contain neither mgissilues nor severe outliers.
The regressors suffer from heavy multicollineantith a condition number
(i.e., ratio of the largest to the smallest singwalue of X™ X ) equal to 3443,
where X denotes the design matrix with elemerﬁ’ﬁ with i=1,...,n and

j=1...p. The principal component analysis does not rees interesting

structure inX, while the contribution of all regressors to thstfprincipal compo-
nents is basically equal. Our following computati@me performed in R software,
using several additional packages (gimnet, het@sbls, quantreg, sandwich).

We performed a backward variable selection by mednvarious methods,
which includet-tests or tests based on White’s estimates of atdredrors. Table 2
shows the resulting significant variables arrangecbrding to the significance,
starting with variables with the smallgstvalue. Tests for the LWS estimator
yield similar results; however, it is needed toetakesort to a nonparametric
bootstrap test (Kalina and PeStovéa, 2017) to regkaests. Within the LS-lasso
estimator, the optimal regularization found by afdld cross-validation in pack-
age glmnet is almost negligible. € 0.004), and thus all variables remain to
contribute to the model, and no variable seledsqgrerformed.

Results of heteroscedasticity tests for the Isgsares as well as for the LWS
estimators for (1) with all 12 regressors are shawiiable 3, where however
none of the tests yields a significant result. Tihisevealed as very misleading in
Figure 1 showing the relationship between the nespand variables 5, 6 and 10,
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which will be later explained to be the crucial regsors in the model. A linear
trend with a major heteroscedasticity can be oleskim each of the figures, in
spite of the results of tests.

Table 2

Variable Selection Applied to Various Estimators wih the List of Significant
Variables, Starting from the Most Significant to the Least Significant

Estimator Method Significant variables
LS t-tests 6,5,9, 1,10
LS White's estimator 6,5,9,1,3,10
LWS Nonparametric bootstrap ,5,9
LWS White's estimator 6,51,9,3
LS-lasso (with optimah. ) Non-zero estimate oﬁj 6,5,9,1,3,10,4,7,2,11,12,8
Regr. quantile£= 0.1 Test based on RRS (A) 56
Regr. quantilef= 0.3 Test based on RRS (A) 5,6
Regr. quantile £ = 0.5) Test based on RRS (A) 6,5,1,10,4
Regr. quantilet=0.7) Test based on RRS (A) 6,5, 10
Regr. gquantile{=0.9) Test based on RRS (A) 6, 10
Source Own computation.
Table 3
Results of Heteroscedasticity Tests
Heteroscedasticity test Degrees of freedom| p-value for LS Asymptotic
p-value for LWS
Breusch-Pagan on 12 variables 12 0.362 0.401
Breusch-Pagan on the set
of regressors {1, 5, 6, 9, 10} 5 0.053 0.063
White's test 20 0.089 0.094

Source Own computation.

Let us now consider generalized least squarekg@Aiestimator) for the model
(1) with all 12 variables. This popular heterosatidaregression approach (see

Greene (2011), Sec. 9.3) proceeds in two stagss, [East squares are used to esti-
matef in (1) and thus to obtain residuals...,u, . In the second stage, the model

Y Yo hXe KK
LU CI LT

is considered and least squares are used to estgad@metery,...,), (instead

+v,i=1...,n (4)

of the original parameterg,,..., 3, ). This two-stage approach is motivated by the

idea (although not directly confirmable) thadr e = o’ lf which implies the errors
V,,...,v. in (4) to be homoscedastic with varianz®. The results of all regressors

(REEREA

in (4) except for variable 12 turn out to be sigrnt and the Breusch-Pagan test
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in the transformed model (4) yieldgpavalue 0.063. This is, however, very mis-
leading due to the presence of redundant variasege will now see.

If we use (4) only with the set of variables {1,& 9, 10}, which are the
5 variables significant bistests of above, all of them turn out to be sigaifit in
(4), and the Breusch-Pagan test yielgsvalue 0.009. Additional graphs (not
presented here) do not reveal a linear trend otrtresformed response against
most of the transformed regressors. In additioa,tthnsform introduces severe
outliers (or propagates their effect) to the datee results remain rather similar
if the LWS model is used, which is more appropriatedata contaminated by
outliers; there remains even heavier heterosceitgsti the transformed model
compared to the original model (1).

Figure 1
Plot of the Response Against Variable 5 (left), Gight) and 10 (bottom)
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Results of three versions of tests for regresqimmtiles (see Section 1) are
presented in Table 2. Tests (A) yield 5 significesgressors for the regression
median. For equal to 0.1 or 0.9, they yield not more than sigmificant regres-
sors. Such dependence of the test result is dnartower confidence intervals
for more extreme (see Koenker, 2005, p. 72). The effect of regmssea the
response is more complex, and regressor 5 (anar® but to be important for
smallerz, while regressor 6 (together with 5 and 10) besanacial for larget.
We consider the set {5, 6, 10} to be result of ahle selection by regression
guantiles, while each of the three variables cofmres a different subindex
of TTCI: Enabling Environment (variable 5), Trawld Tourism Policy (6), and
Infrastructure (10), respectively. Also variablesatd 4, significant for the
regression median, are related to macroeconomicogmeent and highly corre-
lated with variable 5.

The test (B) of equality of all the 12 slopesfofor 5 different values of
was performedcross values equal to {0.1, 0.3, 0.5, 0.7, 0.9 Tesult is highly
significant withp-value 10° . The test remains significant also if various s
of regressors are considered. This is true forstieset {1, 4, 5, 6, 10} with
p=8-10°or{1, 3,5, 6,9, 10} withp=2 - 10

The Khmaladze test (C) yields a highly significaesult if used for all
12 regressors as well as for these subsetp-vtdue can also be approximated,
but this is not provided in R software. While then&ladze test allows consider-
ing the same null hypothesis for individual regogsswe observe such test to be
extremely vulnerable to multicollinearity, as ithisavily dependent on omitting
a single regressor from the model.

For the RQ-lasso for different valuesmofigure 2 shows graphs of estimates
for the 12 regressors, which are analogous to grapmmonly used for LS-lasso.
The figures show solution paths of eagh (estimate off3) against values of

s:‘q‘/ ma* H depending on the regularization parameteHere, the maximal

values in the denominator sfire equal to values of (non-regularized) regr@ssio
-quantiles. Figure 2 thus reveals the effect ofrdgilarization on the estimates
with s = 0 corresponding to maximum possible regularizatiods = 1 to none.
Cross-validation minimizing the mean square errak@s no sense here for find-
ing a suitable estimate of the regularization Ie\mit no alternative method
seems to be available. The set of relevant vasahbl¢éhe model seems not to be
the same across Still, based on a subjective evaluation of Figdyreve consider
the regressors 3, 5, 6 and 10 as the variablegargléor predicting the response.
Here, variables 3 and 5 are highly correlated witirelation coefficient = 0.82;
both are connected to macroeconomic environmenilewfariable 3 is more
important for larget and variable 5 for smaller
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Figure 2

RQ-lasso Estimates Depending os
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For the relevant set {3, 5, 6, 10} of regressdiahle 4 presents an overview
of various estimates of the regression parameRepslasso indicates the hetero-
scedasticity in most of the regressors clearlythasestimates of the parameters
are very different across For the subset {3, 5, 6, 10}, Table 5 shows aterice
intervals for the important regressors 5 and 6. Wiikh of confidence intervals
is larger for extreme quantiles, although not deljpgnonz in a monotone way;
this is in accordance with theoretical knowledgeady discussed above. We
consider RQ-lasso to be a very suitable tool fer @ahalysis of the given data.
Lasso estimators are known as useful, when thexesimsall number of dominant
variables in the whole set of variables, whichleady the case of our dataset.
For smallerz, RQ-lasso reveals a single variable (regressoo Betvery domi-
nant. For larget, 2 or 3 variables turn out to be dominant, whilether regres-
sors do contribute to the response as well.

Table 4

Estimates of Regression Parameters for the SubsdtRegressors {3, 5, 6, 10}
for the Least Squares and Regression Quantiles (RQ)

LS RQ(r=0.) | RQ(z=0.3 | RQ(r=05) | RQ¢=0.7) | RQ ¢=0.9)
bo -0.18 0.99 -0.80 0.32 -0.04 -0.58
5 0.20 -0.01 0.08 0.09 0.26 0.25
5 0.38 0.54 0.49 0.52 0.25 0.44
Bs 0.52 0.26 0.52 0.49 0.53 0.40
Buc 0.15 -0.04 0.07 0.09 0.22 0.29

Source Own computation.

Table 5

A Detailed Overview of Confidence Intervals forfs and #s for Regression
Quantiles in the Model with Regressors {3, 5, 6, 10

T Conf. interval for Width Conf. interval for g Width
0.1 (0.47, 0.85) 0.38 (0.09, 0.48) 0.39
0.3 (0.10, 0.68) 0.58 (0.20, 0.71) 0.51
0.5 (0.30, 0.57) 0.27 (0.39, 0.59) 0.20
0.7 (0.17, 0.58) 0.41 (0.32,0.72) 0.40
0.9 (-0.10, 0.66) 0.76 (0.14, 0.86) 0.72

Source Own computation.

Table 6

Regressors Arranged According to their Relevance fdexplaining the Response,
Based on the LS-lasso and RQ-lasso (RQL)

Method Order of regressors from the most importantto the most redundant

LS-lasso 5 3 10 6 7 9 8 12 1 11 P 4
RQL (r=0.9 5 6 7 8 9 2 1 3 4 12 10 11
RQL (r=0.3) 5 6 10 9 4 3 12 1 2 8 7] 13
RQL (r=0.5) 5 3 10 6 11 7 8 9 2 1 4 12
RQL (r=0.7) 10 5 3 11 6 7 12 9 1 2 4 g
RQL (r=0.9) 10 5 3 6 11 12 2 7 9 1] 4 [

Source Own computation.
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Results of LS-lasso and RQ-lasso (for differenare compared in Table 6,
where all 12 regressors are ordered accordingeio ¢bntribution to the variabili-
ty of the response. With an increasing reguladpaiarametep., these estimates
of each B (j=1...,p) vary until becoming exactly 0. In Table 6, reg@s

are arranged according to such values. pfor which their estimates o be-

come 0. While the variable selection of RQ-lasse tieeoretically appealing

properties as explained in Section 1, it findseattifferent variables from those
obtained with a backward variable selection witar{dard) regression quantiles,
where the latter approach cannot be supporteddaydtical arguments.

Conclusions

The objective of the paper is to discuss variqus@aches to regression mode-
lling under heteroscedasticity and multicollingarithis discussion provides a mo-
tivation for quantile regression and especiallyutagzed regression quantiles.
Limitations of standard tools for heteroscedastitdting or variable selection are
discussed together with benefits of more moderfs timeluding regression quan-
tiles and RQ-lasso. The real dataset from the dournanagement area, which is
downloadable from the website shown in the refesenmder Crotti and Misrahi
(2015), is analyzed here as an illustration ofipalar methods. In the task to ex-
plain and predict the Tourist Service Infrastruet(FSl) as a response of 12 pillars
(as regressors) of TTCI in 141 countries of thelaydhe relevant variables turn
out to be Health and Hygiene, Information and Comigation Technologies
Readiness, Prioritization of Travel and Tourisng &ir Transport Infrastructure.

Heteroscedasticity tests do not give satisfactesylts in the given dataset in
spite of a relatively large. Standard tests do not find the (otherwise apparen
heteroscedasticity in the model. If a subset ofaggprs is considered, hetero-
scedasticity becomes revealed, but then it rentdiffisult to remove it. This is
true for diagnostic tests for the least squareselsas for the robust LWS esti-
mator, for which a novel proper form of White's igsdtor is proposed here in
(3). The LWS estimator, which is theoretically peavto be suitable under hetero-
scedasticity (ViSek, 2011), does not bring manyefien here and its stepwise
variable selection suffers from multicollinearijyst like for the least squares.
The whole set of regressiarmuantiles (across variou$ is illustrated here as
a useful tool for investigating the relationshiptbé response on regressors. In
the given data, this complex relationship turnstouie influenced by heterosce-
dasticity, so that it cannot be simply charactetiag a single mean trend.

The travel and tourism dataset shows that lagsmatfon brings benefits not
only for a large number of variablpsfor which it was originally designed. The
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variable selection of RQ-lasso is known to possesariable selection con-

sistency, which is not true for any stepwise procedor (standard) regression
guantiles. Thus, we evaluate RQ-lasso as preferalthough we admit that its

subjective choice of relevant variables requiregxgerienced user. RQ-lasso is
also more complicated than the LS-lasso and thesulting models are not

equivalent; the latter performs shrinking of estieseof 5 (j =1....,p ) depend-

ing on an additional regularization parameter

On the whole, it turns out that variable selechgrRQ-lasso can be performed
in an analogous spirit as by LS-lasso, althoughHdheer has been rarely used in
econometric applications. Nevertheless, both R@aleend LS-lasso implicitly
assumevarh,...,varh, to be at least approximately equal, which hasheen

theoretically investigated for RQ-lasso. While &840 exhibits some drawbacks
such as instability, too restrictive conditionsthe design matrix, or confound-
ing variables (as discussed by Kalina, 2014), R€3damay potentially inherit
these properties from LS-lasso as well.

Beyond the scope of this paper, other possitslitta regression under hete-
roscedasticity include transforms of the respopessibly combined with a suita-
ble dimension reduction method, such as slicedrggveegression of Li (1991).
A ridge LWS estimator, i.e., a tailor-made versafrihe LWS for multicollinear
data, was investigated by Jurczyk (2012). As futnethodological research, we
plan to extend and investigate lasso estimatidhéd WS estimator or to multi-
variate quantiles of Hlubinka and Siman (2013).tésrism represents a signifi-
cant part of the total economy in many countries @mvides numerous employ-
ment opportunities, exploration of development gratf in tourism should be
a focal point for policymakers around the world.irgsnew statistical methods
can help the economic development of any industoy.tourism policymakers,
an in-depth analysis of conditional quantiles @& tesponse can make the right
strategic decisions possible. This may contribotsttengthening the competi-
tiveness of tourism industry and to ensuring soatale tourism development.
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